
DRIFT: Decoupled compileR-based

Instruction-level Fault-Tolerance ⋆

Konstantina Mitropoulou †, Vasileios Porpodas† and Marcelo Cintra†⋆

School of Informatics, University of Edinburgh †

Intel Labs Braunschweig⋆

{K.Mitropoulou@sms., v.porpodas@, mc@staffmail.}ed.ac.uk

Abstract. Compiler-based error detection methodologies replicate the
instructions of the program and insert checks wherever it is needed. The
checks evaluate code correctness and decide whether or not an error has
occurred. The replicated instructions and the checks cause a large slow-
down. In this work, we focus on reducing the error detection overhead and
improving the system’s performance without degrading fault-coverage.
DRIFT achieves this by decoupling the execution of the code (original
and replicated) from the checks.
The checks are compare and jump instructions. The latter ones sequen-
tialize the code and prohibit the compiler from performing aggressive
instruction scheduling optimizations. We call this phenomenon basic-
block fragmentation. DRIFT reduces the impact of basic-block fragmen-
tation by breaking the synchronized execute-check-confirm-execute cycle.
In this way, DRIFT generates a scheduler-friendly code with more ILP.
As a result, it reduces the performance overhead down to 1.29× (on av-
erage) and outperforms the state-of-the-art by up to 29.7% retaining the
same fault-coverage. The evaluation was done on an Itanium2 by running
MediabenchII and SPEC2000 benchmark suites.

Keywords: compiler error detection, fault tolerance

1 Introduction

The current techniques to improve performance and to reduce energy consump-
tion have made transistors more vulnerable to errors [6][24][29]. Soft Error Rate
(SER) increases as we move to small transistor technologies. In addition, tech-
niques like voltage scaling require transistors to operate at their voltage limit.
This increases SER further. An important class of hardware errors is transient
errors (a.k.a. soft errors) which occur only once and do not persist [28]. Although
transient errors are temporal phenomena, they can alter the program’s execu-
tion. For instance, in 2000, Sun Microsystems received several complaints from
customers such as America On-line, eBay, and Los Alamos Labs, who experi-
enced system failures because of transient errors [18].

Hardware redundancy based error detection techniques are used in high-
availability systems and mission critical environments. Typical examples are
IBM’s G4 and G5 processors [26] and HP NonStop series processors [4]. Not
all systems can afford the cost of the extra hardware and design complexity of

⋆ This work was supported in part by the EC under grant ERA 249059 (FP7).



2

hardware-based error detection. Compiler-based error detection might be prefer-
able instead. There are several reasons: 1. It is more flexible and cheaper than
the hardware design and it can be applied on-the-fly on any system. 2. It oper-
ates at a higher abstraction level restricting the error detection only to errors
that might affect application’s output. 3. It gives the designer the flexibility to
choose the program region that he wants to protect. Its main drawback is that
code duplication has negative impact on performance.

High fault-coverage compiler-based error detection (ED) methodologies face
the challenge of effectively managing the error detection overhead without sac-
rificing reliability. There are two approaches to this. Synchronized techniques
require that the original and redundant code execute in sync such that the exe-
cution is checked in strict intervals. In this way, the strict synchronization guar-
antees fail/stop behavior, but it has negative impact on the code’s performance.
On the other hand, decoupled approaches remove the strict synchronization
between the original and the redundant code, and they let them slip against one
another, while performing the checks slightly later, when convenient. Thus, the
program runs faster. However, the system looses its fail-stop capability since the
synchronization points are removed.

Compiler-based ED techniques increase the code size since they generate
redundant and checking code. This extra code can be executed either on the
same processor as the original code (single-core techniques) or on a separate
core (dual-core techniques). Each scheme is suited for different use scenarios.
On one hand, if there are spare cores and no energy restrictions (all the cores
are turned on), then the dual-core technique is the best option. On the other
hand, if there are no free cores, or the application is one that benefits from using
multiple cores, then wasting multiple cores for running the redundant code is not
wise. Under these circumstances, it might be preferable to apply the single-core
ED scheme on each thread of the multi-threaded application or each program of
a multi-programmed workload. DRIFT is an improved single-core technique.

Our work is based on the observation that the frequent checking of the syn-
chronized scheme becomes a performance bottleneck. This is a phenomenon we
refer to as basic-block fragmentation. The checks break the code into very
small basic-blocks with two exiting control edges (Figure 1.1.b). The resulting
complex control flow acts as a barrier for aggressive compiler optimizations at
the instruction scheduling level, even for the most aggressive schedulers. For ex-
ample, in Figure 1.1, the original basic-block BB1 (Figure 1.1.a) splits into three
basic-blocks. The scheduler cannot easily move the instructions among basic-
blocks to improve ILP because it strictly must respect the program semantics.
This is an important restriction that prohibits the compiler from generating high
performance code for synchronized single-core ED. DRIFT introduces a novel
decoupled single-core technique that avoids the basic-block fragmentation and
improves the performance considerably by relaxing the synchronization between
original, replicated code and checks. It achieves this by clustering the checks
(Figure 1.1.c) so as to keep the basic-blocks big. In this way, the code is not
fragmented into many basic-blocks and can be scheduled more efficiently.

We note that, strictly speaking, our code generation scheme does modify the
code semantics. This, however, takes advantage of knowledge of ED semantics
(which are not available to a standard compiler) and does affect the semantics
of the original (non-ED) program. Therefore, the aggressive code motion that



3

we perform in DRIFT, could not have been done automatically by any compiler
optimization since the compiler is restricted to always preserving the program
semantics.

BB1 BB1a

BB1b

BB1c

BB1b

BB1c

BB1a

EHR

EHR

EHR

EHR

EHR

EHR
(b) (c)

(a)

basic−block

fragmentation

control edge original code

replicated code check

EHR: Error Handling Routine

EXECUTE
EXECUTE

REPLICATED

COMPARE

EXECUTE
EXECUTE

REPLICATED

COMPARE

ERROR
?

ERROR
?

(a)

(b)

STOP

STOP

1 2

Fig. 1: 1.Control-flow graph for (a) code without ED, (b) synchronized ED (SWIFT)
and (c) decoupled ED code (DRIFT). 2.(a) Synchronized ED and (b) Decoupled ED.

Our contributions are:

– This work is the first to point out a major performance bottleneck in syn-
chronized ED caused by basic-block fragmentation.

– DRIFT overcomes the basic-block fragmentation bottleneck by being the
first decoupled single-core ED scheme.

– DRIFT outperforms the state-of-the-art by up to 29.7% reducing the per-
formance overhead down to 1.29× while retaining high fault-coverage.

The rest of the paper is organized as follows: Section 2 presents basic-block
fragmentation problem and the proposed solution. Section 3 describes DRIFT
algorithm. Section 4 shows the experimental set-up. Section 5 discusses perfor-
mance and fault-coverage results. Section 6 overviews the related work. Section
7 concludes this paper.

2 Motivation

Synchronized VS Decoupled: In compiler-based error detection, decoupling
was first used in DAFT[32] so as to remove the overhead of synchronizing between
the main and the checker thread. In that case the main and checker threads are
decoupled and allowed to slip between each other. In synchronized single-core
error detection, checks are synchronization points where the code is checked for
errors and a control point is inserted in the code. In Figure 1.2.a, it is shown
that the execution of the program is interrupted by the checks, which are in the
critical path of the program. Therefore, the need to synchronize very often is a
significant slowdown factor for compiler-based error detection. The solution is
to remove these synchronization points by decoupling the execution of the code
(original, replicated) from the checks. In Figure 1.2.b, we see that the program



4

does synchronize since the checks can be executed some time later. This boosts
the performance of the program and reduces the error detection overhead. Such
performance improvement may come at the expense of reduced fault coverage.
However, as shown previously (e.g., [32]), the impact on fault-coverage is not
serious. This is further discussed in the Decoupled Single-Core (DRIFT) Section.

Synchronized Single-Core limitations: In the Synchronized ED (Figure
1.1.b), all original, replicated and checking code is placed on the same thread.
A check is placed right before a non-replicated instruction. Every check com-
pares the original and the replicated code using a compare (CMP) instruction.
If the check succeeds, then the code continues executing (no jump), otherwise
the control jumps (JMP) to the appropriate error handling routine.

The performance bottleneck of this scheme due to such synchronization,
shows up as what we call basic-block fragmentation. This problem has two main
factors: 1.The complicated Control Flow: The frequent checks (CMP + JMP)
break the original code into a sequence of small basic-blocks with two outgoing
edges each. For example BB1 in Figure 2.a gets split by ED into five basic-
blocks (Figure 2.b). 2.Instruction scheduling: The complex control flow due to
the checks acts as a scheduling barrier for the instruction scheduling optimiza-
tion (e.g., trace scheduling). Even with a speculative scheduler that schedules
regions of multiple basic-blocks, the control edges (due to the checks) limit the
scheduler’s ability to hoist instructions and extract adequate amounts of ILP.
Any state-of-the-art region-based instruction scheduler has some limitations in
hoisting instructions across basic-blocks: 1.It cannot hoist instructions with side-
effects over branches since this can break the program semantics. This restricts
the hoisting of system calls, and store instructions [11, 14]. 2.If there is no hard-
ware support for deferring exceptions then dangerous instructions such as loads
and divisions cannot be hoisted either [15]. As a result, the scheduler generates
poorly performing schedules, with low ILP.

Decoupled Single-Core (DRIFT): In this paper we propose DRIFT, an
ED scheme that addresses the shortcomings of the Single-Core Synchronized
scheme, as described earlier. DRIFT is based on three ideas: 1.Optimized Control
Flow: Modifying the control flow of the application can enhance the ability of the
instruction scheduler to optimize the code. Since instruction schedulers are not as
effective across basic-blocks as within basic-blocks, larger basic-blocks are better.
This can be done by decoupling the execution of checks and by executing them
later together as a group. By contrasting Figure 2b versus Figure 2c, we observe
that DRIFT generates a much more instruction-scheduler friendly code than the
Synchronized scheme. 2.It is acceptable to break the semantics of the combined
original and replicated code, as long as the semantics of the original code are
respected. This unawareness of normal compilers to the semantics of ED code
is the main reason why the compiler cannot automatically generate decoupled
code (like the one DRIFT generates) out of the synchronized code. Therefore
the code of Figure 2c cannot have been generated by any compiler optimization.
Breaking the semantics in a controlled way is required for modifying the code
in such an aggressive way. 3.DRIFT’s decoupled semantics have no effect on
fault-coverage. As shown in [32], modifying the semantics of the application
with ED support, such that the checks are decoupled from the execution, has
a minimal impact on the effectiveness of error detection. This is because in the
usual case, the increased delay between the error and its detection is not great



5

r3=r2+100

r20=r10+16

[r20]=r3

r4=r2+200

r5=r4+r3

r30=r10+32

[r30]=r5

(p1) jmp

(p2) jmp

BB1

r3’=r2’+100

r3=r2+100

r20’=r10’+16

r20=r10+16

cmp p1,p0=r3,r3’

[r20]=r3

r4’=r2’+200

r4=r2+200

r5’=r4’+r3’

r5=r4+r3

r30’=r10’+32

r30=r10+32

[r30]=r5

cmp p3,p0=r30,r30’

cmp p4,p0=r5,r5’

(p1) jmp

BB2

(p2) jmp

BB3

(p3) jmp

BB4

(p4) jmp

cmp p2,p0=r20,r20’

before scheduling

r3’=r2’+100 r3=r2+100 r20’=r10’+16 r20=r10+160

BB1

1

2

3

[r20]=r3

r5’=r4’+r3’

[r30]=r5

cmp p1,p0=r3,r3’ r4’=r2’+200

r30=r10+32

r4=r2+200

r5=r4+r3 r30’=r10’+32

cmp p3,p0=r30,r30’ cmp p4,p0=r5,r5’cmp p2,p0=r20,r20’

(p1) jmp4

(p2) jmp5

BB3

BB2

(p3) jmp6

BB4

7 (p4) jmp

after scheduling

c) DRIFT (relax 4 checks)

original code

replicated code

check code

inter−block transfer

Control edge to 
Error Handling
Routine

before scheduling

a) No ED (code without error detection)

after scheduling
BB1 BB1

r3=r2+100

[r20]=r3

r4=r2+200 r30=r10+32r20=r10+160

1

2

r5=r4+r3

[r30]=r5

BB1

BB2

cmp p2,p0=r20,r20’

(p2) jmp

[r20]=r3

r4’=r2’+200

r4=r2+200

r5’=r4’+r3’

r5=r4+r3

r30’=r10’+32

r30=r10+32

(p3) jmp

BB4

BB3

(p4) jmp

BB5

[r30]=r5

r3’=r2’+100

r3=r2+100

r20’=r10’+16

r20=r10+16

(p1) jmp
cmp p1,p0=r3,r3’

before scheduling

cmp p3,p0=r30,r30’

cmp p4,p0=r5,r5’

b) Synchronized ED

BB1

r3’=r2’+1000
1

2
cmp p1,p0=r3,r3’

r3=r2+100

cmp p2,p0=r20,r20’

r20=r10+16

r4’=r2’+200

r20’=r10’+16

r4=r2+200

after scheduling

3
BB2

BB3
4

5

6

[r20]=r3

r5=r4+r3

r30’=r10’+32r30=r10+32

r5’=r4’+r3’

7

BB4

8

9
BB5

cmp p3,p0=r30,r30’

(p3) jmp

cmp p4,p0=r5,r5’

(p4) jmp

[r30]=r5

Fig. 2: The code before and after instruction scheduling for (a) code without ED, (b)
synchronized ED and (c) DRIFT where four checks are executed together.



6

enough to let the error propagate to the output. Moreover, it has been shown in
[7][13][31] that a significant number of errors such as ISA-defined exceptions can
be detected by the operating system. This is a fundamental feature of DRIFT,
which guarantees its high fault-coverage despite the modified semantics that
allow for better performance.

DRIFT motivating example: In Figure 2, the example shows the code
for 3 cases: 1. No error detection, 2. Synchronized ED and 3. DRIFT which
decouples 4 checks. Each sub-figure shows the code before instruction scheduling
(left) and the scheduling table (right) of a hypothetical 4-issue machine. All
ED, schemes Figure 2.b-c, contain the same number of checks and replicated
instructions (red). This is because all schemes have the same sphere of replication
(see Section 3). In this work, our baseline is SWIFT [22] which is the state-
of-the-art single-core error detection. In SWIFT, checks are added before store
instructions. For example the store instruction “[r20]=r3” has its inputs checked.
The check “cmp p1,p0 = r3,r3”’ makes sure that the instructions “r3=r2+100”
and “r3’=r2’+100” produce the same result.

Basic-Block Fragmentation: Checks split the code into numerous basic-blocks.
For example the original code of Figure 2.a is a single basic-block, but the ED
code of Figure 2.b spans over 5 basic-blocks (BB1-BB5). Therefore, checks act
as fragmentation points for the Control Flow Graph (CFG).

The difference between the Synchronized scheme (Figure 2.b) and the DRIFT
scheme (Figure 2.c) is the amount of fragmentation of the basic-blocks. The
Synchronized case is the most fragmented one, as checks are regularly injected
into the code (see Figure 2.b left). On the other hand, DRIFT groups together
multiple checks. In the example of Figure 2.c, it groups 4 checks together. We
refer to this grouping of checks as “decoupling” and the amount of checks being
decoupled as “decouple factor”. Increasing the check relaxation decreases the
fragmentation of basic-blocks (see Figure 2.c left).

Performance and Schedule: To understand the impact of decoupling on per-
formance, we have to look into the instruction schedule tables (on the right
side of each sub-figure). The schedule is obtained after an inter-block instruction
scheduler has scheduled across the basic-blocks of the ED code (left). Inter-block
code hoisting is marked with green. The Synchronized scheme is fragmented as
checks introduce edges into the control flow. These edges prohibit aggressive code
hoisting in several cases. For example, “[r20]=r3” of BB3 cannot be hoisted into
BB2 or BB1 as it modifies unknown memory. For the same reason, “r[30]=r5”
of BB5 cannot be hoisted as well.

Removing these control flow restrictions improves the schedule considerably,
as instructions can be hoisted and parallelized easily. For example in Figure 2.c,
all instructions are within a single basic-block (BB1), which makes it straight-
forward for any scheduler to parallelize.

3 DRIFT

Sphere of Replication: Similar to other state-of-the-art compiler-based ED
techniques ([22],[30],[32]) DRIFT assumes that the memory is protected by its
own mechanisms like Error Correcting Code (ECC), parity checking or other
mechanisms. Therefore the data fetched from the memory is considered to be
correct. Thus the Sphere of Replication (SoR) in DRIFT is limited to within the
processor only.



7

The instructions that are not replicated are: 1.Control Flow instructions (e.g.,
branches, function calls). 2.Store instructions.

The code of the linked binary libraries is not protected. This can be changed
by recompiling them with DRIFT.

The non-replicated instructions are synchronization points since the checks
are inserted before them.

Decouple Factor: As explained in Section 2, DRIFT decouples the checks
off the critical path of the execution by grouping them. Each group of checks
contains up to N number of checks. We refer to this as decoupling N checks or
setting the decouple factor to N. Therefore the decouple factor is a knob that
controls the number of checks that are executed later together in a group. For
example, if the decouple factor is two, then the checks will execute in pairs.
For small values of the decouple factor, the program has similar (though slightly
better) behavior to the Synchronized ED and suffers from basic-block fragmenta-
tion. As the decouple factor increases, more checks are clustered together giving
the scheduler the freedom to schedule the instructions more efficiently.

Increasing the decouple factor has two side-effects: 1. We slightly increase the
risk of allowing erroneous data to propagate to memory and corrupt the output
of the program. 2. We keep more values in predicate registers which increases the
predicate register pressure. This may cause performance degradation if it results
in register spilling. Moreover, for big values of decouple-factor, many checks are
executed together. This means that there might not be enough units to deal with
this workload. Therefore, there is a trade-off between the number of checks that
are decoupled, the fault-coverage and the hardware capacity. We explore the
effect of the decoupled factor on both performance and reliability in the results
Section.

DRIFT algorithm is listed in Algorithm 1 and it operates in four steps:
1.Code Replication: The algorithm checks if an instruction can be replicated

(Algorithm 1.a line 11). If this is true, then an exact duplicate of the original
instruction (Algorithm 1.a line 13) is emitted just before the original one. The
original instruction and its replica are inserted into a table (Algorithm 1.a line
14). This table is used later in the algorithm to recall the replicated instruction
that corresponds to any original instruction.

2.Code Isolation: This step isolates the replicated code from the original code
(Algorithm 1.a line 17). The isolation makes sure that the replicated code does
not write on any of the original code’s registers. Register isolation does not let
the replicated code affect the original code’s execution in any way. This is done
by register renaming the replicated instructions. In short, the algorithm iterates
over all original instructions in the program (Algorithm 1.a lines 18,19) and for
each of them it retrieves the corresponding replicate instruction from the table
(see step 1) (Algorithm 1.a line 21) and renames all registers written by the
replicated instructions along with each of their uses (Algorithm 1.a line 22). All
renamed registers are filled into a table which is used in step 3.

3.Emit checks: Next, the algorithm finds all the non-replicated instructions.
For each non-replicated instruction (Algorithm 1.b line 4), the algorithm finds
the registers that the non-replicated instruction reads. For each one of these
registers (Algorithm 1.b line 5), it emits one compare instruction right before
the non-replicated instruction. The compare instruction compares the original
register against the corresponding renamed one (it gets it by accessing the data-



8

structure of step 2). The synchronized ED technique emits a jump instruction
immediately after the compare instruction, it updates the control-flow and this
is the final step of the algorithm. On the other hand, DRIFT collects all the
compare instructions of a basic-block into the vector (CMP VEC) which is used
in step 4 to perform the grouping.

4.Decouple Checks: This function (Algorithm 1.b line 10) emit as many jump
instructions as the value of decouple factor. In more details, we push the in-
structions of CMP VEC into vector GROUP (line 12), until we either reach the
maximum group capacity (= DECOUPLE FACTOR) (line 13) or we reach the
end of the basic-block (line 14). Once one of the above occurs, a jump is emitted
for each instruction in the group (line 15). For example, if the decouple factor
is two and the length of CMP VEC is six, then the conditional jumps will be
emitted in three pairs: two jump instructions are placed after the second, the
forth and the sixth compare instruction.

Algorithmorithm 1.a

1 relaxed_main (DECOUPLE_FACTOR)

2 {for each BB

3 replicate_insns (BB)

4 register_rename (BB)

5 CMP_VEC = emit_compare_insns (BB)

6 emit_jump_insns (CMP_VEC,

→֒DECOUPLE_FACTOR, BB)

7 }

8 /*Emit replicated instructions*/
9 replicate_insns (BB)

10 {for INSN in BB instructions

11 skip if INSN i) control-flow

12 ii) memory

13 emit an exact duplicate of INSN

→֒just before it

14 add the original and the duplicate

→֒ into the data structure

15 }

16 /*Code isolation.*/

17 register_rename ()

18 {for INSN in BB instructions

19 skip duplicates

20 INSN_ORIG = INSN

21 INSN_DUP = get_duplicate_of (

→֒INSN_ORIG)

22 rename_writes_and_uses (INSN_ORIG,

→֒ INSN_DUP)

23 }

Algorithmorithm 1.b

1 /* Inject the CMP instructions. */

2 emit_compare_insns (BB)

3 {for INSN in instructions:

4 skip all but the non-replicated

→֒instructions.

5 for each REG read by INSN:

6 Get REG_RENAMED(the renamed REG

→֒from the data structure).

7 Emit CHECK_INSN before INSN

→֒comparing REG with

→֒RENAMED_REG.

8 }

9 /*Decouple checks.*/
10 emit_jump_insns (CMP_VEC,

→֒DECOUPLE_FACTOR, BB)

11 {for CMP_INSN in CMP_VEC

12 push CMP_INSN into GROUP

13 if(GROUP has DECOUPLE_FACTOR

→֒members

14 OR end of BB reached)

15 Emit JMP_INSN.

16 Update Control Flow Graph.

17 }

Processor: Itanium2 Cache (same as Itanium[17])
Issue width 6 Levels L1 L2 L3 Main
Instruction Latencies Same as Itanium2 [17] Size 16KB 256KB 3MB ∞
Register File 128GP, 128FL, 64PR Block size 64B 128B 128B -
Branch Prediction Perfect Associativity 4-Way 8-way 12-way -

Latency(cycles) 1 5 12 150

Table 1: SKI IA64 configuration.

4 Experimental Setup

We implemented our error detection scheme in a compiler pass in GCC-4.5.0 [1].
The DRIFT pass was placed just before the first instruction scheduling pass.



9

We evaluated our compiler-based error detection scheme using 9 benchmarks
from the Mediabench II video [8] and the SPEC CINT2000 [10] benchmarks.
These are the benchmarks that we managed to compile with our heavily modified
compiler.

All benchmarks were compiled with -O2 optimizations enabled. To prevent
optimizations such as Common Sub-expression Elimination (CSE) and Dead
Code Elimination (DCE) from removing the replicated code, we disabled them
at the late back-end stages of compilation, only for the ED schemes (they are
enabled in NOED). This is common-practice in compiler-based error detection
schemes (e.g., SWIFT [22]). The performance impact of these disabled phases is
negligible (1.5% in the worst case and 0.3% on average).

The performance evaluation was done on a DELL PowerEdge 3250 server
with 2x1.4GHz Intel Itanium 2 processors. For the fault coverage evaluation,
we used a modified SKI IA-64 simulator [2] (Table 1). The simulator is a cycle-
accurate Itanium 2 simulator, modified to allow fault injection.

5 Results and Analysis

We evaluated our scheme by measuring: 1.NOED which is the code with no error
detection, 2.SWIFT which is the state-of-the-art synchronized single-core error
detection methodology [22]. For simplicity, SWIFT is usually implemented with
branch checking instead of control-flow checking [5][7]. These techniques have
the same overhead. The only difference is that control-flow checking verifies the
execution of a jump instruction. It should be noticed that data checking is or-
thogonal to control-flow checking. This means that control-flow checking can be
plugged in the proposed technique as well without any performance degrada-
tion. 3.DRIFT was implemented with various decouple factors (DEC-2, DEC-4,
DEC-8, DEC-16, DEC-INF). For example, DEC-4 implies a decouple factor of
four. DEC-INF implies an infinite decouple factor which suggests that all checks
are placed at the end of the basic-block. A decouple factor of 1 is not measured
because it is equivalent to SWIFT.

DRIFT can be applied to multi-threaded applications to protect each of the
running threads. In some cases, scalable multi-threaded applications can benefit
more from single-core ED than dual-core ED. Because, in the latter case, half of
the cores will be used for ED only, hindering the scalability of the application.
A detailed comparison against a dual-core scheme is beyond the scope of this
paper.

The results are shown in Figure 3 and Figure 4. Each row shows the results
of each benchmark. The first column shows the normalized cycle count of all
schemes. The cycles are normalized to NOED. The second column presents the
percentage of basic-blocks that have a given number of checks. For example, in
cjpeg, over 30% of the basic-blocks have 2 checks (checks2). This measurement
is based on run-time information (we take into account the number of times
each basic-block is executed at run-time). The number of checks usually im-
plies the basic-block size. The last column shows the fault-coverage for all the
configurations.

5.1 Performance Evaluation

The results of the first column in Figure 3 and Figure 4 validate our assumption
that basic-block fragmentation is a significant slow-down factor of the synchro-



10

0.00

0.25

0.50

0.75

1.00

1.25

1.50

N
O

ED

SW
IFT

D
EC

-2

D
EC

-4

D
EC

-8

D
EC

-16

D
EC

-IN
F

n
o

rm
al

iz
ed

 c
y

cl
es

 t
o

 N
O

E
D

 

cjpeg

0%

10%

20%

30%

40%

checks0

checks1

checks2

checks3

checks4

checks5

checks6

checks7

cehcks8

checks9

checks10

checks11-20

checks21-30

checks31-40

checks41-50

checksR
EST

N
u

m
b

er
 o

f 
B

B
s

 Number of Checks in BB

Distribution of BBs with given Checks

cjpeg

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

N
O
ED

SW
IFT

D
EC

-2

D
EC

-4

D
EC

-8

D
EC

-16

D
EC

-IN
F

E
rr
o
r
D
is
tr
ib
u
ti
o
n

detected
exceptions

data-corruption
time-out

benign

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

N
O

ED

SW
IFT

D
EC

-2

D
EC

-4

D
EC

-8

D
EC

-16

D
EC

-IN
F

n
o

rm
al

iz
ed

 c
y

cl
es

 t
o

 N
O

E
D

 

djpeg

0%

10%

20%

30%

40%

50%

checks0

checks1

checks2

checks3

checks4

checks5

checks6

checks7

cehcks8

checks9

checks10

checks11-20

checks21-30

checks31-40

checks41-50

checksR
EST

N
u

m
b

er
 o

f 
B

B
s

 Number of Checks in BB

Distribution of BBs with given Checks

djpeg

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

N
O

ED

SW
IFT

D
EC

-2

D
EC

-4

D
EC

-8

D
EC

-16

D
EC

-IN
F

E
rr

o
r 

D
is

tr
ib

u
ti

o
n

 

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

N
O

ED

SW
IFT

D
EC

-2

D
EC

-4

D
EC

-8

D
EC

-16

D
EC

-IN
F

n
o

rm
al

iz
ed

 c
y

cl
es

 t
o

 N
O

E
D

 

h263dec

0%

10%

20%

30%

40%

checks0

checks1

checks2

checks3

checks4

checks5

checks6

checks7

cehcks8

checks9

checks10

checks11-20

checks21-30

checks31-40

checks41-50

checksR
EST

N
u

m
b

er
 o

f 
B

B
s

 Number of Checks in BB

Distribution of BBs with given Checks

h263dec

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

N
O

ED

SW
IFT

D
EC

-2

D
EC

-4

D
EC

-8

D
EC

-16

D
EC

-IN
F

E
rr

o
r 

D
is

tr
ib

u
ti

o
n

 

0.00

0.50

1.00

1.50

2.00

2.50

N
O

ED

SW
IFT

D
EC

-2

D
EC

-4

D
EC

-8

D
EC

-16

D
EC

-IN
F

n
o

rm
al

iz
ed

 c
y

cl
es

 t
o

 N
O

E
D

 

h263enc

0%

10%

20%

30%

40%

checks0

checks1

checks2

checks3

checks4

checks5

checks6

checks7

cehcks8

checks9

checks10

checks11-20

checks21-30

checks31-40

checks41-50

checksR
EST

N
u

m
b

er
 o

f 
B

B
s

 Number of Checks in BB

Distribution of BBs with given Checks

h263enc

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

N
O

ED

SW
IFT

D
EC

-2

D
EC

-4

D
EC

-8

D
EC

-16

D
EC

-IN
F

E
rr

o
r 

D
is

tr
ib

u
ti

o
n

 

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

N
O

ED

SW
IFT

D
EC

-2

D
EC

-4

D
EC

-8

D
EC

-16

D
EC

-IN
F

n
o

rm
al

iz
ed

 c
y

cl
es

 t
o

 N
O

E
D

 

mpeg2dec

0%

10%

20%

30%

40%

checks0

checks1

checks2

checks3

checks4

checks5

checks6

checks7

cehcks8

checks9

checks10

checks11-20

checks21-30

checks31-40

checks41-50

checksR
EST

N
u

m
b

er
 o

f 
B

B
s

 Number of Checks in BB

Distribution of BBs with given Checks

mpeg2dec

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

N
O

ED

SW
IFT

D
EC

-2

D
EC

-4

D
EC

-8

D
EC

-16

D
EC

-IN
F

E
rr

o
r 

D
is

tr
ib

u
ti

o
n

 

0.00

0.50

1.00

1.50

2.00

2.50

N
O

ED

SW
IFT

D
EC

-2

D
EC

-4

D
EC

-8

D
EC

-16

D
EC

-IN
F

n
o

rm
al

iz
ed

 c
y

cl
es

 t
o

 N
O

E
D

 

mpeg2enc

0%

10%

20%

30%

40%

checks0

checks1

checks2

checks3

checks4

checks5

checks6

checks7

cehcks8

checks9

checks10

checks11-20

checks21-30

checks31-40

checks41-50

checksR
EST

N
u

m
b

er
 o

f 
B

B
s

 Number of Checks in BB

Distribution of BBs with given Checks

mpeg2enc

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

N
O

ED

SW
IFT

D
EC

-2

D
EC

-4

D
EC

-8

D
EC

-16

D
EC

-IN
F

E
rr

o
r 

D
is

tr
ib

u
ti

o
n

 

Fig. 3: Results Part 1: The first column shows the performance improvement of DRIFT
over SWIFT and NOED, the second one presents the percentage of basic-blocks that
have a given number of checks and the third one shows the fault-coverage.



11

0.00

0.50

1.00

1.50

2.00

N
O

ED

SW
IFT

D
EC

-2

D
EC

-4

D
EC

-8

D
EC

-16

D
EC

-IN
F

n
o

rm
al

iz
ed

 c
y

cl
es

 t
o

 N
O

E
D

 

181.mcf

0%

10%

20%

30%

40%

50%

checks0

checks1

checks2

checks3

checks4

checks5

checks6

checks7

cehcks8

checks9

checks10

checks11-20

checks21-30

checks31-40

checks41-50

checksR
EST

N
u

m
b

er
 o

f 
B

B
s

 Number of Checks in BB

Distribution of BBs with given Checks

181.mcf

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

N
O

ED

SW
IFT

D
EC

-2

D
EC

-4

D
EC

-8

D
EC

-16

D
EC

-IN
F

E
rr

o
r 

D
is

tr
ib

u
ti

o
n

 

0.00

0.50

1.00

1.50

2.00

N
O

ED

SW
IFT

D
EC

-2

D
EC

-4

D
EC

-8

D
EC

-16

D
EC

-IN
F

n
o

rm
al

iz
ed

 c
y

cl
es

 t
o

 N
O

E
D

 

175.vpr

0%

10%

20%

30%

40%

checks0

checks1

checks2

checks3

checks4

checks5

checks6

checks7

cehcks8

checks9

checks10

checks11-20

checks21-30

checks31-40

checks41-50

checksR
EST

N
u

m
b

er
 o

f 
B

B
s

 Number of Checks in BB

Distribution of BBs with given Checks

175.vpr

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

N
O

ED

SW
IFT

D
EC

-2

D
EC

-4

D
EC

-8

D
EC

-16

D
EC

-IN
F

E
rr

o
r 

D
is

tr
ib

u
ti

o
n

 

0.00

0.50

1.00

1.50

2.00

N
O

ED

SW
IFT

D
EC

-2

D
EC

-4

D
EC

-8

D
EC

-16

D
EC

-IN
F

n
o

rm
al

iz
ed

 c
y

cl
es

 t
o

 N
O

E
D

 

300.twolf

0%

10%

20%

30%

40%

50%

checks0

checks1

checks2

checks3

checks4

checks5

checks6

checks7

cehcks8

checks9

checks10

checks11-20

checks21-30

checks31-40

checks41-50

checksR
EST

N
u

m
b

er
 o

f 
B

B
s

 Number of Checks in BB

Distribution of BBs with given Checks

300.twolf

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

N
O

ED

SW
IFT

D
EC

-2

D
EC

-4

D
EC

-8

D
EC

-16

D
EC

-IN
F

E
rr

o
r 

D
is

tr
ib

u
ti

o
n

 

Fig. 4: Results Part 2: Same as Part 1

nized single-core ED scheme (SWIFT). Both techniques were scheduled with
the same state-of-the-art GCC region-based speculative scheduler. In the case
of SWIFT, it is shown that the compiler cannot produce efficient code since the
complicated control-flow acts as a barrier to code motion optimizations. On the
other hand, DRIFT creates a scheduler-friendly code. As a result, the perfor-
mance improvement of DRIFT over SWIFT is up to 29.7% (h263enc, DEC-4)
and DRIFT manages to decrease its overhead over NOED down to 1.29×.

DRIFT’s performance varies across benchmarks and it is largely affected by
the check distribution. Benchmarks like cjpeg, h263dec, mpeg2dec, 175.vpr and
300.twolf have small number of checks per basic-block. Therefore, a decouple
factor of 2 is enough to improve their performance. On the other hand, a larger
decouple factor benefits the applications that contain many checks per basic-
block (e.g., djpeg, h263enc and mpeg2enc).

The performance of some benchmarks, however, degrades as the decouple
factor reaches very high values (close to DEC-INF). This is the case for djpeg,
h263enc and mpeg2enc. These benchmarks have many basic-blocks with a high
number of checks (as shown in the second column). A high value of the decouple
factor in these cases can lead to high predicate register pressure. In addition, in
the end of each basic-block, we have a tree of compare instructions that slows



12

down the code. That’s why DEC-4 performs best for h263enc and mpeg2enc
(29.7% and 28% respectively) and DEC-INF is much worse.

Table 2 shows the decouple factor for which DRIFT achieves the best speedup
over SWIFT. From the above discussion, we can see that the best decouple
factor is a trade-off between basic-block fragmentation and register pressure.
The results show that DEC-4 is a good compromise between the two; DEC-4 is
big enough to reduce the impact of basic-block fragmentation and small enough
to avoid register pressure.

Bench- Performan- Slowdown Decouple Bench- Performan- Slowdown Decouple
mark ce gain over Factor mark ce gain over Factor

over SWIFT NOED over SWIFT NOED
cjpeg 11.1% x1.04 2,4 mpeg2enc 28% x1.39 4,8
djpeg 25% x1.2 8,16 181.mcf 2% x1.18 8
h263dec 17.7% x1.25 2 175.vpr 10.5% x1.31 4
h263enc 29.7% x1.48 4 300.twolf 5.1% x1.37 4
mpeg2dec 18.2% x1.24 2

Table 2: DRIFT’s best performance compared to SWIFT and NOED.

Figure 5 shows that the binary size of SWIFT is about 2.5× greater than
NOED. This is expected due to the additional ED code injected into the code
stream. DRIFT generates slightly smaller binaries (2.3× greater than NOED),
which is further evidence that DRIFT improves the resulting schedule, because
the instructions are packed into fewer instruction bundles. As the decouple factor
increases the binary size is almost the same. Increasing the decouple factor in
benchmarks with small number of checks per basic-block does not change the
code any further. In benchmarks (e.g., djpeg, h263enc and mpeg2enc) with large
number of checks per basic-block, the ILP might increase as the decouple factor
increases, leading to more compact code, but the register spilling adds extra code
which counterbalances the code reduction.

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

cjpeg djpeg h263dec h263enc mpeg2dec mpeg2enc 181.mcf 175.vpr 300.twolf

N
o
rm
a
liz
e
d
s
iz
e

Binary size for all ED schemes

NOED DEC-2 DEC-4 DEC-8 DEC-16 DEC-INFSWIFT

Fig. 5: Binary code size for all benchmarks, normalized to NOED.

5.2 Fault Coverage Evaluation

The fault coverage results presented in this paper are generated using SKI IA-64
simulator [2]. The simulator was modified to inject errors at the output registers
of instructions, which is common practice in the literature ([5],[7],[22],[30],[32]).

The fault coverage results are produced with Monte Carlo simulations. The
procedure starts with each original binary being profiled in order to count the
number of dynamic instructions. The fault injection is done as follows: a dynamic
instruction is randomly selected and one of its outputs is randomly picked for



13

injection. Then, a random bit of the register output is flipped. Errors are injected
into general purpose and predicate registers. This process is repeated 300 times
for each benchmark and each configuration.

For our evaluation, we assume a Single Event Upset (SEU) fault model
(double-events are extremely rare [22]). This means that original binaries are
injected with one error per run. The binaries that support error detection are
much larger (2.3x larger on average than the original (Figure 5)). A fair com-
parison between the original code and the error detection code requires keeping
the error rate fixed [22]. Thus, the error detection codes are injected with one
error per the number of dynamic instructions of the original binary. It has to
be mentioned that, with this methodology, we do inject errors in the system
libraries which are out of DRIFT’s SoR.

The output of each Monte Carlo trial is classified into one of the following five
categories. 1.Benign Errors (aka masked errors) are the errors that do not affect
program’s output and they produce the same output and exit code as the good
execution. 2.The errors that DRIFT algorithm successfully detects are classified
as Detected. 3.Exceptions are caught by our custom exception handler and are
considered as detected (e.g., as in [32]). 4.Data Corrupt Errors, which are the
errors that cause wrong outputs without being detected. 5.Finally, some errors
result in infinite execution. Those errors are detected by our simulator and we
name them Time out Errors.

The third column of Figure 3 and Figure 4 shows that DRIFT and SWIFT
are almost identical in fault-coverage. In a few cases (h263enc and 181.mcf), some
of the detected errors in SWIFT are transformed into exceptions in DRIFT. As
we explained in Section 3, both SWIFT’s and DRIFT’s Sphere of Replication
does not include store instructions. Therefore, store instructions are not repli-
cated. In SWIFT, a check is inserted before every non-replicated instruction in
order to prohibit corrupted data to propagate to memory. DRIFT delays the
execution of some of the checks. Thus, some stores might be executed before
verification takes place, leading to exceptions raised by the system. These ex-
ceptions are detected by our exception handler (as done in DAFT [32]). As in
all high fault-coverage techniques, Data-corruption and Time-out errors are very
rare. Therefore, DRIFT has practically the same fault-coverage as SWIFT even
for high values of the decouple factor.

In the performance evaluation (Section 5.1), we showed that a decouple factor
of 4 always improves system performance. The fault coverage results show that
it has very good fault-coverage as well.

Finally, we observe that the computational nature of the benchmark plays an
important role on fault coverage. For example, mpeg2enc, cjpeg and h263enc,
are encoding benchmarks which means that lots of data get compressed. This
may involve the process of sub-sampling, which by definition ignores the value of
parts of the input. If an error occurs on data that gets compressed, then it may
not propagate at all and it will not appear in the output of the program. For
this reason, NOED has almost 90% benign errors. In this type of applications,
decoupling is less risky.

6 Related Work

Code redundancy can take various forms: instruction, thread and process redun-
dancy. EDDI [20] was the first to introduce compiler-base instruction-level



14

redundancy. SWIFT [22] significantly improves upon it by reducing the memory
overhead. SRMT [30] and DAFT [32] reduce overhead further by allocating the
replicated code and the checks to a second core.

Hardware Thread-level redundancy was introduced by AR-SMT [23].
This work proposed the idea of redundant multi-threading (RMT) on SMT cores.
The active thread executes the program and puts its results on a delay buffer.
The redundant thread executes the same instruction stream and compares the
results that it produces with the ones from the delay buffer. The committed
state of the redundant thread is also used as a recovery checkpoint.

Several works are based on AR-SMT and extend it. [21] introduces Simul-
taneous and Redundant Threaded (SRT) processors that take advantage of an
SMT processor’s extra thread contexts. Similarly, [19] uses the SMT idea on
CMPs proposing Chip-level Redundant Threading (CRT). [12] and [27] present
techniques that exploit the idle cores for redundant thread execution. The main
disadvantage of redundant multi-threading is that it reduces the system’s total
throughput because it occupies more thread contexts and hardware resources.
Additionally, compared to compiler-based approaches, it requires custom hard-
ware.

Process level redundancy (PLR) [25] replicates the processes of the appli-
cation and compares their outputs to ensure correct execution. The processes
synchronize to compare their outputs when the value escapes user space to the
kernel. RAFT [9] improves this scheme by removing the synchronization barri-
ers. PLR has small overhead since it checks fewer values than other approaches,
but this comes at the cost of maintaining multiple memory states.

Wang [31] introduced symptom-based error detection. The main idea is
that transient errors generate symptoms like memory exceptions, cache misses,
branch mis-predictions etc. These symptoms can be used for error detection. In
Shoestring [7], the error detection is based on symptoms, requiring less replica-
tion. This leads to better performance, but worse fault-coverage.

In hardware error detection, correctness is checked on hardware. Hardware-
based designs include the watchdog processors in [16] and [3]. The main idea is
that a smaller and simpler in design processor, which is considered safer, follows
the execution of the main processor. Commercial processors like IBM’s S/390
[26] replicate the entire execution unit.

7 Conclusion
We presented DRIFT, the first work that explores and solves a significant per-
formance limitation in single-core error detection methodologies, namely, basic-
block fragmentation. DRIFT is based on the idea of decoupling which breaks
the execute-check-confirm-execute synchronization cycle existing in synchronized
schemes. DRIFT decouples the execution of the code from the checks, resulting
in code that the scheduler can optimize better as it is no longer limited by
the complex control flow caused by the frequent checking. Our evaluation on
a real machine shows significant performance improvements up to 29.7% and
average performance overhead of 1.29× compared to native, non-fault tolerant,
code. The performance gains have no impact on the fault-coverage compared to
synchronized schemes.

References
1. GCC: GNU compiler collection. http://gcc.gnu.org.



15

2. SKI, an IA64 instruction set simulator. http://ski.sourceforge.net.
3. T. Austin. DIVA: A reliable substrate for deep submicron microarchitecture design.

MICRO, 1999.
4. D. Bernick et al. Nonstop advanced architecture. DSN, 2005.
5. J. Chang et al. Automatic instruction-level software-only recovery. DSN, 2006.
6. C. Constantinescu. Trends and challenges in VLSI circuit reliability. IEEE Micro,

2003.
7. S. Feng et al. Shoestring: Probabilistic soft error reliability on the cheap. ASPLOS,

2010.
8. J. Fritts et al. Mediabench II video: Expediting the next generation of video

systems research. SPIE, 2005.
9. Y. Ghosh et al. Runtime asynchronous fault tolerance via speculation. CGO, 2012.

10. J. Henning. SPEC CPU2000: Measuring CPU performance in the new millennium.
IEEE Computer, 2000.

11. W.-M. W. Hwu et al. The superblock: An effective technique for VLIW and
superscalar compilation. Journal of Supercomputing, 1993.

12. C. LaFrieda et al. Utilizing dynamically coupled cores to form a resilient chip
multiprocessor. DSN, 2007.

13. M. Li et al. Understanding the propagation of hard errors to software and impli-
cations for resilient system design. ASPLOS, 2008.

14. P. G. Lowney et al. The multiflow trace scheduling compiler. Journal of Super-
computing, 1993.

15. S. Mahlke et al. Sentinel scheduling for vliw and superscalar processors. ASPLOS,
1992.

16. A. Mahmood et al. Concurrent error detection using watchdog processors-a survey.
IEEE Transactions on Computers, 1988.

17. C. McNairy et al. Itanium 2 processor microarchitecture. IEEE Micro, 2003.
18. S. Michalak et al. Predicting the number of fatal soft errors in Los Alamos national

laboratory’s ASC Q supercomputer. IEEE Transactions on Device and Materials
Reliability, 2005.

19. S. Mukherjee et al. Detailed design and evaluation of redundant multithreading
alternatives. ISCA, 2002.

20. N. Oh et al. Error detection by duplicated instructions in super-scalar processors.
IEEE Transactions on Reliability, 2002.

21. S. Reinhardt et al. Transient fault detection via simultaneous multithreading.
ISCA, 2000.

22. G. Reis et al. SWIFT: Software Implemented Fault Tolerance. CGO, 2005.
23. E. Rotenberg. AR-SMT: A microarchitectural approach to fault tolerance in mi-

croprocessors. FTCS, 1999.
24. P. Shivakumar et al. Modeling the effect of technology trends on the soft error

rate of combinational logic. DSN, 2002.
25. A. Shye et al. Using process-level redundancy to exploit multiple cores for transient

fault tolerance. DSN, 2007.
26. T. Slegel et al. IBM’s S/390 G5 microprocessor design. IEEE Micro, 1999.
27. J. Smolens et al. Reunion: Complexity-effective multicore redundancy. MICRO,

2006.
28. D. Sorin. Fault tolerant computer architecture. Synthesis Lectures on Computer

Architecture, 2009.
29. J. Srinivasan et al. The impact of technology scaling on lifetime reliability. DSN,

2004.
30. C. Wang et al. Compiler-managed software-based redundant multi-threading for

transient fault detection. CGO, 2007.
31. N. Wang et al. ReStore: Symptom-based soft error detection in microprocessors.

IEEE Transactions on Dependable and Secure Computing, 2006.
32. Y. Zhang et al. DAFT: Decoupled Acyclic Fault Tolerance. PACT, 2010.


