
CASTED: Core-Adaptive Software Transient Error Detection for Tightly Coupled

Cores

Konstantina Mitropoulou Vasileios Porpodas Marcelo Cintra1

School of Informatics

University of Edinburgh

{K.Mitropoulou@sms., v.porpodas@, mc@staffmail.}ed.ac.uk

Abstract—Aggressive silicon process scaling over the last
years has made transistors faster and less power consuming.
Meanwhile, transistors have become more susceptible to errors.
The need to maintain high reliability has led to the development
of various software-based error detection methodologies which
target either single-core or multi-core processors.

In this work, we present CASTED, a Core-Adaptive Soft-
ware Transient Error Detection methodology that focuses on
improving the impact of error detection overhead on single-
chip scalable architectures that are composed of tightly coupled
cores. The proposed compiler methodology adaptively dis-
tributes the error detection overhead to the available resources
across multiple cores, fully exploiting the abundant ILP of these
architectures. CASTED adapts to a wide range of architecture
configurations (issue-width, inter-core delay).

We evaluate our technique on a range of architecture config-
urations using the MediabenchII video and SPEC CINT2000
benchmark suites. Our approach successfully adapts to (and
regularly outperforms by up to 21.2%) the best fixed state-of-
the-art approach while maintaining the same fault coverage.

Keywords-adaptation, error detection

I. INTRODUCTION

The design of today’s processors is based on the as-

sumption that the underlying CMOS transistors and in-

terconnect never fail. However, the constant demand for

higher performance and less power consumption of modern

microprocessors have led to smaller transistor technologies.

The side-effect of this trend is that processors have become

more susceptible to errors.

Transient errors (a.k.a. soft errors) occur only once and

do not persist [29]. Although transient errors are temporal

phenomena, they can alter the program’s execution. The

main sources of transient errors can be either external factors

such as alpha particles and cosmic radiation or internal

ones such as a fluctuating power supply and electromagnetic

interference [6]. It has been proven in prior work [31] that

these factors are critical for architectures that use small

transistor technologies. Moreover, voltage scaling reduces

the noise margins and increases the possibility of uncharged

transistors [6].

1Marcelo Cintra is currently on sabbatical leave at Intel Labs.
∗This work was supported in part by the EC under grant ERA 249059

(FP7).

Transient errors can cause whole systems to fail. For

instance, in 2000, Sun Microsystems received several com-

plaints from customers such as America On-line, eBay, and

Los Alamos Labs that they experienced system failures

because of transient errors [18]. Because of this, high-end

systems like servers and systems where safety is an im-

portant design parameter, include some error detection and

recovery mechanisms. The common design practice for those

systems is to replicate the critical hardware components to

ensure that if an error occurs in one component, the other

will be able to detect it. This makes error detection as simple

as comparing the outcomes of the identical components.

A typical example of this approach is IBM’s G4 and G5

processors [27] where two copies of instruction units and

execution units are used.

Processors with hardware error detection are costly due to

extra hardware and the high development cost. An alternative

to this is software-based error detection. These methodolo-

gies operate at a higher abstraction level restricting the error

detection only to errors that might affect the application’s

output. Moreover, they give the designer the flexibility to

choose the program region that needs protection. The main

concept of software error detection is also redundancy, but

instead of replicating the hardware, we replicate the program

code. Code redundancy guarantees that the code is executed

more than once in time or in space. That is, the duplicated

code can execute on the same hardware but at a different

time, or at the same time on a different hardware unit.

Because of the nature of transient errors, only one of the

codes (original or replicated) is affected by an error.

In this paper, we introduce an adaptive way to map the

error detection code (original and redundant code) to the

cores. The proposed software-based error detection method-

ology takes advantage of the features (such as fast inter-core

communication) of scalable tightly coupled cores [8][32][37]

to optimally distribute the error detection overhead across

cores/clusters while maintaining high reliability. In the text,

we use the terms cluster and core interchangeably as the

proposed technique can apply to architectures with tightly-

coupled cores or to clustered VLIWs.

CASTED is an adaptive compiler mechanism that gen-

erates code for different architecture configurations. It suc-



ceeds this in two steps. Firstly, it generates the redundant

code (replicated + checking code) for the detection of

transient errors. Secondly, it schedules the error detection

code taking into consideration the capabilities of the target

architecture (issue width, inter-core delay). This suggests

that depending on the conditions, the code can be: i)

executed all within a single core ii) split into sections, some

of which will run on one core and the rest on the other.

Existing approaches are non-adaptive, meaning that they

assign either the whole program to a single core, or the

original code to one core and the replicated code to another.

This is because they target commodity single-core or multi-

core architectures. We show that this is sub-optimal for our

target.

To summarize, this paper’s contribution is a novel error

detection methodology that automatically generates error

detection code and:

• adaptively distributes the error detection overhead

across available resources

• optimizes it for a wide range of core counts, issue-

widths and inter-core communication latencies

• achieves improved performance with no impact on the

fault coverage.

II. BACKGROUND AND MOTIVATION

A. Error Detection Overhead

Software-based error detection methodologies are expen-

sive in terms of performance. The replicated and checking

code increase code size by a factor greater than 2 [23].

Recent works try to reduce this overhead in many ways.

In attempt to decrease the overhead of memory traffic,

SWIFT[23] does not replicate store instructions. This can

be safely done since the memory subsystem is protected

by its own error detection mechanisms like ECC, parity

checking etc. In addition, SWIFT improves performance

by significantly reducing the number of checking points

(synchronization points). Shoestring[9] further decreases

performance overhead by reducing the number of replicated

instructions even more, but relies on the operating system

to detect a significant fraction of the errors.

CASTED tries to ”hide” the error detection overhead

by fully exploiting the available ILP of architectures with

tightly coupled cores. These architectures look like Fig.1.

They are wide-issue scalable clustered architectures (such

as [8],[32],[37]). Such architectures differ from traditional

monolithic (non-clustered) designs in that critical resources

(e.g the register file) are partitioned into small parts. Each

part along with other resources (e.g. functional units) are

tightly connected together and form a cluster. Within a

cluster the data transfers are fast and energy efficient. Across

clusters there is an inter-cluster delay penalty.

Tightly coupled cores differ from traditional multi-core ar-

chitectures in the inter-core communication delay. Contrary

RF

FU

cluster 1

RF

FU

cluster 2

Figure 1. Target Architecture.

to the multi-core systems, data can be communicated across

cores very fast, in just a few cycles (from one core’s register

file to the other). This feature is exploited by CASTED to

distribute the error detection overhead across cores in a fine-

grain fashion (that is distributing the workload at an instruc-

tion level granularity). This can boost performance since the

original and replicated code have no true dependency and

thus can run in parallel.

Depending on the system setup, the architecture might

be configured in many ways. Parameters such as the issue-

width, the inter-core delay and the number of available cores

can change across designs. The challenge for CASTED is

to fully take advantage of the available resources and to

effectively distribute the error detection overhead no matter

what configuration is used. CASTED uses these parameters

to decide whether it is preferable to assign the whole error

detection code in one core or it is more efficient to split the

code into different cores. This adaptivity in the distribution

of the error detection overhead across multiple resources is

the main feature of our scheme. In the following section, we

will explain why current error detection methodologies fail

to do this.

B. Motivating Example

Existing software-based techniques do not map well on

tightly coupled cores as shown in the motivating exam-

ples in Fig.2 and 3. The proposed approach is the first

compiler-based error detection technique that exploits the

fast interconnect of architectures with tightly-coupled cores

to distribute the error detection overhead across the cores. It

is also the first one to fully adapt to the system configuration

(issue width of each core, communication cost). As a result

the performance achieved is at least as good as the best

performing of the existing techniques on any configuration.

The following examples demonstrate our methodology

and show how adaptation works. Both examples (Fig.2 and

3) are based on some sample code with the Data Flow Graph

(DFG) shown on the left of each figure. This code is referred

to as the original code. Fig.2.c and Fig.3.c show the DFG

of the error detection code. The error detection DFG shows

some important attributes of the error-detection code: i. The

error detection DFG is much larger (in node count) than the

original DFG. This is because of a) the numerous replicated

instructions (in blue) and b) the check instructions (CHK)

just before each non-replicated (N.R.) node. ii. Its critical



A

B

C

N.R.

D

N.R.

(b)

core 0

A

B

A’

B’

C C’

CHK

CHK

D

N.R.

N.R.

D’

CHK

(e)

core 0 core 1

A

B

C C’

B’

A’

CHK

CHK

N.R.

D

D’

CHK

N.R.

(f)

core 1core 0

N.R.

N.R.

D

CA

B

(a)

(a) Original Data Flow
(b) Original Code without Eror Detection (NOED)
(c) Data Flow with Error Detection Code
(d) Single−Core Error Detection (SCED)
(e) Dual−Core Error Detection (DCED)
(f) Core−Adaptive Software Transient Error Detection (CASTED) 

D

N.R.

D’

N.R.

CHK

(c)

N.R. non−replicable instruction
check instruction

replicated instruction
original instruction

Motivating Example 1

A’

B’

CHK

C

C’

CHK

D’

D

N.R.

CHK

N.R.

A

B

core 0

(d)

C

B’

C’

CHK

A

B

CHK

A’

Figure 2. DCED outperforms the resource constrained SCED.

A

B

N.R.

C D

E F

N.R.

core 0

(b)

A A’

B B’

CHK

N.R.

C D

FE

C’ D’

E’ F’

CHKCHK

N.R.

core 0

(d)

A A’

B B’

CHK

N.R.

C D

E F C’ D’

F’E’

CHKCHK

N.R.

core 1core 0

(e)

A A’

B B’

CHK

N.R.

C D

E F C’ D’

E’ F’

CHKCHK

N.R.

core 0 core 1

(f)

N.R. non−replicable instruction
replicated instruction
original instruction

check instruction

C’

E’

C

E

A A’

B B’

N.R.

D

F

N.R.

D’

F’

CHK

CHK CHK

(c)

(a) Original Data Flow
(b) Original Code without Error Detection (NOED)
(c) Data Flow with Error Detection Code 
(d) Error Detection for Single−core (SCED)
(e) Error Detection for Dual−core (DCED)
(f) Core−Adaptive Software Transient Error Detection (CASTED)

N.R.

DC

E F

N.R.

B

A

(a)

Motivating Example 2

Figure 3. SCED outperforms DCED, which suffers from inter-core
communication delay.

path is longer because of the check instructions (CHK).

iii. Its ILP is higher compared to the original code. This

is because the replicated instructions can be executed in

parallel with their respective original instructions.

We compare against two non-adaptive methodologies that

are influenced by the state-of-the-art for single-threaded

and multi-threaded error detection. To quantify the perfor-

mance of each scheme, we show the corresponding instruc-

tion schedule after applying the error detection algorithms

(SCED, DCED and CASTED) on our target (Fig.2.d,e,f and

Fig.3.d,e,f). The communication delay for this example is

set to 1 cycle.

The example shows the schedules of: i. The original code

(Fig.2.b and Fig.3.b) with no error detection (NOED). ii.

The Single-Core Error Detection (SCED) approach (Fig.2.d

and Fig.3.d) where the original and the replicated codes

follow one another alternatively. iii. The Dual-Core Error

Detection (DCED) approach (Fig.2.e and Fig.3.e) where the

original code always runs on one core and the replicated

and checking code (redundant code) always runs on the

second one. The non-replicated (N.R.) instructions (store

and control-flow instructions) are only executed in the main

code because it is the only one that can access the memory.

The verification is only done by the checker code. iv.

The proposed Core-Adaptive Error Detection (CASTED)

approach (Fig.2.f and Fig.3.f) where instructions of the error

detection code (original code, replicated code and checks)

are assigned to the cores in an adaptive way. This leads to

better resource utilization.

In Example 1, each core is single-issue. This setup might

be simplistic but helps us point out the shortcomings of

the existing approaches. We observe that the dual-core case

(Fig.2.e) outperforms the single-core one (Fig.2.d). This is

due to the fact that the single-issue single core is resource

constrained and as such it can not effectively execute both

the original code and the replicated code. The dual-core case,

has more resources and performs better. CASTED (Fig.2.f)

makes better use of the resources. It assigns the instructions

of the original and the replicated code to the first available

core. For example, the checks and a part of the replicated

code are executed in the main cluster as this will speed up

the algorithm.

Example 2 shows a case where the inter-core delay can

become the performance bottleneck for the dual-core case. In

more detail, in Example 2, each core is two-wide issue. We

observe that the single-core case (Fig.3.d) outperforms the

dual-core (Fig.3.e) for two reasons: i. It is wide-issue enough

to accommodate the ILP of the error detection code with just

a few cycles of overhead. ii. The dual-core case suffers from

inter-core communication delay due to the sub-optimal fixed

placement of the original and checker code instructions on

the first and second core respectively. CASTED (Fig.3.f), on

the other hand, powered by the adaptive placement of the

instructions to the cores, performs as well as the best of the

two approaches. This is because it is delay-aware and assigns

the instruction to the cores in such a way that the delay does

not become the bottleneck. It is worth noting that not only

the replicated instructions but also the check instructions

are moved across cores, in an attempt to minimize the cycle

count.

III. CASTED

CASTED is a software-based technique, implemented in

the compiler back-end. It comprises of two algorithms: (a)

The first one is a single-threaded software error detection

algorithm with a high fault-coverage. This generates the



redundant code and the check instructions. (b) The second

algorithm is the one responsible for the adaptivity of our

scheme. It is based on [7] and is the one that assigns the

instructions to the cores.

A. Target Architecture

CASTED works on tightly coupled cores such as

RAW[32], VOLTRON[37] and VLIW clusters [8]. In this

work, we use a clustered VLIW architecture with config-

urable resources and inter-cluster communication latency

(Fig. 1). Both clusters operate in lockstep execution. Each

cluster can access the other cluster’s register file but this

has an increased latency (the inter-cluster communication

latency) since it has to go through the interconnect. More

details for the configurations are provided in IV-A.

B. Sphere of Replication

CASTED assumes that the memory subsystem (caches

included) is protected by its own mechanisms like Error

Correcting Code (ECC), parity checking or other mecha-

nisms. Therefore the data fetched from the memory is con-

sidered correct. This is why the sphere of replication(SoR)

in CASTED is limited within the processor only. This is

common practice in the majority of software-based error

detection methodologies [9][23][34][36].

The error detection algorithm (Algorithm 1) we used in

this work is one that makes a good compromise between

performance and reliability.

The instructions that are not replicated are the following:

1) Control Flow instructions (e.g. branches, function

calls): the control flow is followed by only one of

the cores.

2) Store instructions: We do not replicate store instruc-

tions, because this requires memory partition and

increases the memory footprint and bandwidth. We

guarantee that they will not let corrupted data to be

written in the memory by checking their operands

before their execution.

3) Compiler-generated instructions.

In the paper, we refer to control-flow and store instructions

as non-replicated instructions.

CASTED does not replicate the code of the library func-

tions linked into the output when these libraries are supplied

as binaries.

C. Error Detection

The Error Detection algorithm in CASTED works as

follows:

i. The algorithm (Algorithm 1) first replicates the instruc-

tions (Algorithm 1, line 10) that are not in one of the above

categories. This is done by emitting an exact duplicate of the

original instruction. The new replicated instruction is placed

just before the original one. Each original instruction that

...

...

Rmax

Rx+2
Rx+1
Rx
Rx−1

r2
r1
r0

...

A’

...

a. Replicated Instructions Table.

idMAX
idMAX−1

id(A)+1
id(A)
id(A)−1
id(A)−2

A

instruction

3
2
1
0

b. Register Renamed Table.

RxOriginal

Original
Register

RenamedInstruction
RegisterReplicated

Rx’

Figure 4. The table data-structures used by the error detection algorithm.

gets replicated has its replicated instruction inserted into a

table as shown in Fig.4.a

ii. The next step is the replicated code’s isolation. The

replicated code is isolated from the original one, so that it

does not write over the original code’s registers. Register

isolation does not let the replicated code affect the original

code’s execution in any way. This is done by register

renaming the replicated instructions (Algorithm 1, line 21).

In short, the algorithm iterates over all original instructions

in the program (line 23,24) and for each of them it retrieves

the corresponding replicated instruction from the table (see

step 1) (INSN DUP line 26). Next, it renames all registers

written by the replicated instructions along with each of their

uses (line 27). All renamed registers are filled into the table

data-structure of Fig.4.b. The algorithm uses this data in step

iii.

iii. Next, the checks are emitted wherever required (Algo-

rithm 1, line 46). This function scans all the instructions and

finds all the non-replicated ones. For each one of the non-

replicated instructions, it finds the registers read by them.

For each register it emits a compare instruction, right before

the non-replicated instruction that reads this register. The

check is a compare instruction that compares the original

register against the corresponding renamed one (it gets it

by accessing the data-structure of Fig.4.b). The compare

instruction is followed by a jump instruction that diverts

the program’s execution in case of an error.

D. Adaptivity

CASTED adaptively assigns the code to the available

cores, using the Bottom-Up-Greedy (BUG) clustering algo-

rithm [7] (Algorithm 2). As its name suggests, it is a greedy

algorithm that makes the clustering decision based on the

completion cycle of the instruction into consideration; each

instruction gets assigned to the core where it will execute

the earliest. The completion cycle heuristic is aware of the

inter-cluster delays and can therefore adjust its behavior on

any architecture configuration.

In more detail, the algorithm walks through the Data Flow



Algorithm 1. Error Detection Algorithm
1 /*Main function (entry point)*/

2 relaxed_main ()

3 {

4 replicate_insns ()

5 register_rename ()

6 emit_check_insns ()

7 }

8

9 /* Check whether an instruction can be replicated. If

→֒ so, then emmit a copy before the original

→֒instruction.*/

10 replicate_insns ()

11 {

12 for INSN in instructions

13 Skip if INSN i) control-flow

14 ii) store

15 iii) special non-replicate

16 Emit an exact duplicate of INSN just before it

17 Register the duplicate into the data structure

18 }

19

20 /* Code isolation.*/

21 register_rename (INSN_ORIG,INSN_DUP)

22 {

23 for INSN in instructions

24 Skip duplicates

25 INSN_ORIG = INSN

26 INSN_DUP = duplicate_of (INSN_ORIG)

27 rename_writes_and_uses (INSN_ORIG, INSN_DUP)

28 }

29

30 /* Rename the writes of the INSN and its uses.*/

31 rename_writes_and_uses (INSN_ORIG, INSN_DUP)

32 {

33 for REGW in registers written by INSN_ORIG:

34 if (INSN_ORIG has no duplicates)

35 Create COPY_INSN: NEW_REG = REGW

36 Emit COPY_INSN after INSN_ORIG

37 Rename the uses of REGW with NEW_REG for

→֒duplicated instructions.

38 else

39 NEW_REG = the renamed register of REGW if

→֒already renamed.

40 Register rename the REGW of INSN_DUP to

→֒NEW_REG

41 Rename the uses of REGW with NEW_REG for

→֒duplicated instructions.

42

43 }

44

45 /* Find and inject the check instructions. */

46 emit_check_insns ()

47 {

48 for INSN in instructions:

49 skip all but the non-replicated instructions.

50 for each REG read by INSN:

51 Get REG_RENAMED: the renamed REG from the

→֒data structure.

52 Emit CHECK_INSN before INSN comparing REG

→֒with RENAMED_REG.

53 }

Graph (DFG) in a topological order, by giving preference to

the instructions in the critical path. For each instruction, it

calculates the value of the completion cycle and selects the

core that corresponds to the lowest cycle. The completion

cycle is resource aware. After the core assignment decision

has been made, that specific resource (that is the cycle and

the chosen core) is marked as used in the reservation table.

In Fig.2.f, CASTED observes that the execution of the

replicated instructions(A’, B’ and C’) in the second cluster

... ...

In
st

ru
ct

io
n

S
ch

ed
u

le
r

GCC−4.5.0

E
m

it
 E

rr
o
r

C
o
d

e

D
et

ec
ti

o
n

In
st

ru
ct

io
n

s

C
o
re

−
A

ss
ig

n

CASTED

Figure 5. CASTED passes in the back-end of GCC

is beneficial for performance as the communication latency

overlaps with the execution of the checks. Similarly, exe-

cuting D’ in the second cluster is expensive because of the

communication delay. Therefore, CASTED places D’ in the

first cluster. Moreover, contrary to existing schemes, checks

can migrate from one cluster to the other when appropriate

(Fig.2).

Unlike the other approaches, CASTED balances the use

of hardware resources. For example, Fig.2 shows the exe-

cution of non-replicated instructions on both cores. In the

case of memory instructions, this improves memory level

parallelism (MLP).

Algorithm 2. Bottom-Up-Greedy (BUG) assignment algorithm
1 /* The main function (simplified) of BUG algorithm ‘

→֒*/

2 bug (node)

3 {

4 if node is leaf OR node is assigned

5 return;

6 /* Visit the instructions in topological order

→֒giving preference to the critical path */

7 for node’s predecessor sorted by critical path

8 bug (predecessor)

9

10 /* Calculate the completion cycle heuristic */

11 sorted cores,sorted cycles=compl_cycle(node)

12 /* Assign NODE to CORE and CYCLE */

13 node.core = FIRST (best cores)

14 node.cycle = FIRST (best cycles)

15

16 /* Reserve issue slots in reservation table */

17 reservation set(core,\author{} cycle)

18 }

IV. EVALUATION AND ANALYSIS

A. Experimental Setup

The CASTED system is implemented as two back-end

passes in GCC-4.5.0 [1] compiler infrastructure. We im-

plemented both the error detection and the core-assignment

(adaptivity) algorithms in separate passes placed just before

the first instruction scheduling pass, as illustrated in Fig.5.

The target architecture is a clustered VLIW with the

Itanium2 [25] instruction set. The processor configuration

is listed in Table I. We simulate the execution on a modified

SKI IA-64 simulator[2]. The modified simulator is a cycle-

accurate Itanium2 simulator with a full cache memory

hierarchy, the same as the one of Itanium2.



Processor: IA64 based clustered VLIW

Clusters: 2
Issue width: configurable
Instruction Latencies: configurable
Register File: (64GP, 64FL, 32PR) per cluster
Branch Prediction: Perfect

Cache: Levels 3 (same as Itanium2 [17])

Levels : L1 L2 L3 Main

Size (Bytes): 16K 256K 3M ∞

Block size (Bytes): 64 128 128 -
Associativity: 4-Way 8-way 12-way -
Latency (cycles): 1 5 12 150
Non-Blocking: YES YES YES -

Table I
PROCESSOR CONFIGURATION.

MediaBench2 SPEC CINT2000

cjpeg 175.vpr
h263dec 181.mcf
mpeg2dec 197.parser
h263enc

Table II
BENCHMARK PROGRAMS

We evaluated our software error detection scheme on 7

benchmarks. 4 are from the Mediabench II video [10] and

3 from the SPEC CINT2000 [13] benchmarks, as listed

in Table II. We ran the benchmarks to completion. All

benchmarks were compiled with optimizations enabled (-O1

flag) and with instruction scheduling enabled. We turned off

the late stages of the Common Subexpression Elimination

(CSE) and Dead Code Elimination (DCE) optimizations

that get called after the CASTED passes. This is common

practice ([23]) to prevent these optimizations from removing

the replicated code and it has been shown that it has

negligible impact on performance (1.5% in the worst case

and 0.3% on average in our case). These optimizations are

not disabled in the performance evaluation of the No Error

Detection code (NOED).

B. Performance Evaluation

We evaluate the performance of CASTED by comparing

it against the Single-Core Error Detection (SCED), the

Dual-Core Error Detection (DCED) and the single-core No

Error Detection (NOED)(this is the unmodified code). The

performance results for all benchmarks for various issue

widths and inter-core delays are shown in Fig.6 and 7. These

results are normalized to NOED for each issue width (that

is all issue 1 results are normalized to NOED-issue 1, all

issue 2 to NOED-issue 2, etc.).

1) SCED Slowdown: The first observation to be made is

the variation in the slowdown of SCED compared to NOED

across benchmarks and configurations. It varies from 1.34 to

2.22, and is 1.7 on average. Such variation can be attributed

to the variation in the quantity of the error checking code and

the variation of register spilling it causes. For example, the

more non-duplicated instructions (e.g stores and branches)

the code has, the more checks the error detection algorithm

adds. In SCED, both the original and the error detection

code run in one core. Therefore, the performance is only

affected by the issue-width. In general, SCED’s performance

improves dramatically as the issue width increases. As we

explained in section II-A and in the motivating examples of

Fig.2 and 3, the redundant code has no dependencies with

the original code and can run in parallel in an ILP fashion.

Once the resource constraints are no longer the bottleneck,

the execution speeds up. In other words, the more available

resources we have, the better performance SCED achieves

with the exception of h263enc which will be discussed next.

2) SCED Scalability: Fig.8 shows the scaling of NOED,

SCED, DCED and CASTED performance as the issue-width

increases. This is a metric of the ILP, the steeper the curve,

the more the ILP. In most cases, SCED scales better than

NOED (Fig.8) which results in a decrease in the SCED-

NOED performance difference as the issue-width increases.

This can be clearly observed in the majority of benchmarks

in Fig.6 and 7. This difference in scaling between SCED

and NOED is a measure of the additional ILP of the

redundant code. In applications with low ILP (e.g. 181.mcf),

the original code (NOED) scales poorly with the issue-width

(as there is low ILP). However, SCED scales better than

NOED because of the extra ILP.

On the other hand, h263enc (Fig.6) is a benchmark where

SCED does not scale as expected. This is because the

redundant code has low ILP due to the frequent checking.

As shown in Algorithm 1, the checking code consists of

compare and jump instructions. Therefore, the more checks

the code has, the more sequential the code becomes and

according to Amdahl’s law the error detection code should

scale worse than NOED.

3) DCED Slowdown: The baseline dual-core perfor-

mance (DCED)(Fig.6 and 7) also varies compared to the

performance of NOED across benchmarks and configura-

tions. The slowdown is between 1.31 and 3.32 (2.1 on

average). There are two factors that contribute to that. The

first one is the issue width. The second and most important

factor is the inter-core delay. The bigger the delay, the

worse the performance. This is due to the fact that DCED

performs regular inter-core communication which becomes

a performance bottleneck as the inter-core delay increases.

4) DCED Scalability: The scalability of DCED according

to Fig.8 is worse than that of SCED. As explained previ-

ously, SCED performs better as the issue-width increases be-

cause it spreads instructions across more issue-slots. DCED

has a head start. Even at issue 1, it has exploited a large

part of the ILP of the redundant code as it executes it in a

different core. From that point on, there is little room for

improvement. This explains the strange phenomenon where



0.00

0.50

1.00

1.50

2.00

2.50

3.00

issue1 issue2 issue3 issue4n
o
rm

al
iz

ed
 c

y
cl

es
 t

o
 N

O
E

D

 

cjpeg-delay 1

NOED
SCED
DCED

CASTED

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

issue1 issue2 issue3 issue4n
o
rm

al
iz

ed
 c

y
cl

es
 t

o
 N

O
E

D
 

cjpeg-delay 2

NOED
SCED
DCED

CASTED

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50

issue1 issue2 issue3 issue4n
o
rm

al
iz

ed
 c

y
cl

es
 t

o
 N

O
E

D

 

cjpeg-delay 3

NOED
SCED
DCED

CASTED

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50
5.00

issue1 issue2 issue3 issue4n
o
rm

al
iz

ed
 c

y
cl

es
 t

o
 N

O
E

D

 

cjpeg-delay 4

NOED
SCED
DCED

CASTED

0.00

0.50

1.00

1.50

2.00

2.50

3.00

issue1 issue2 issue3 issue4n
o
rm

al
iz

ed
 c

y
cl

es
 t

o
 N

O
E

D

 

h263dec-delay 1

NOED
SCED
DCED

CASTED

0.00

0.50

1.00

1.50

2.00

2.50

3.00

issue1 issue2 issue3 issue4n
o
rm

al
iz

ed
 c

y
cl

es
 t

o
 N

O
E

D

 

h263dec-delay 2

NOED
SCED
DCED

CASTED

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

issue1 issue2 issue3 issue4n
o
rm

al
iz

ed
 c

y
cl

es
 t

o
 N

O
E

D

 

h263dec-delay 3

NOED
SCED
DCED

CASTED

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50

issue1 issue2 issue3 issue4n
o
rm

al
iz

ed
 c

y
cl

es
 t

o
 N

O
E

D

 

h263dec-delay 4

NOED
SCED
DCED

CASTED

0.00

0.50

1.00

1.50

2.00

2.50

3.00

issue1 issue2 issue3 issue4n
o

rm
al

iz
ed

 c
y

cl
es

 t
o

 N
O

E
D

 

mpeg2dec-delay 1

NOED
SCED
DCED

CASTED

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

issue1 issue2 issue3 issue4n
o

rm
al

iz
ed

 c
y

cl
es

 t
o

 N
O

E
D

 

mpeg2dec-delay 2

NOED
SCED
DCED

CASTED

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50

issue1 issue2 issue3 issue4n
o

rm
al

iz
ed

 c
y

cl
es

 t
o

 N
O

E
D

 

mpeg2dec-delay 3

NOED
SCED
DCED

CASTED

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50
5.00

issue1 issue2 issue3 issue4n
o

rm
al

iz
ed

 c
y

cl
es

 t
o

 N
O

E
D

 

mpeg2dec-delay 4

NOED
SCED
DCED

CASTED

0.00

0.50

1.00

1.50

2.00

2.50

3.00

issue1 issue2 issue3 issue4n
o

rm
al

iz
ed

 c
y

cl
es

 t
o

 N
O

E
D

 

h263enc-delay 1

NOED
SCED
DCED

CASTED

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

issue1 issue2 issue3 issue4n
o

rm
al

iz
ed

 c
y

cl
es

 t
o

 N
O

E
D

 

h263enc-delay 2

NOED
SCED
DCED

CASTED

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

issue1 issue2 issue3 issue4n
o

rm
al

iz
ed

 c
y

cl
es

 t
o

 N
O

E
D

 

h263enc-delay 3

NOED
SCED
DCED

CASTED

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50

issue1 issue2 issue3 issue4n
o

rm
al

iz
ed

 c
y

cl
es

 t
o

 N
O

E
D

 

h263enc-delay 4

NOED
SCED
DCED

CASTED

0.00

0.50

1.00

1.50

2.00

2.50

3.00

issue1 issue2 issue3 issue4n
o

rm
al

iz
ed

 c
y

cl
es

 t
o

 N
O

E
D

 

175.vpr-delay 1

NOED
SCED
DCED

CASTED

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

issue1 issue2 issue3 issue4n
o

rm
al

iz
ed

 c
y

cl
es

 t
o

 N
O

E
D

 

175.vpr-delay 2

NOED
SCED
DCED

CASTED

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

issue1 issue2 issue3 issue4n
o

rm
al

iz
ed

 c
y

cl
es

 t
o

 N
O

E
D

 

175.vpr-delay 3

NOED
SCED
DCED

CASTED

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50
5.00

issue1 issue2 issue3 issue4n
o

rm
al

iz
ed

 c
y

cl
es

 t
o

 N
O

E
D

 

175.vpr-delay 4

NOED
SCED
DCED

CASTED

0.00

0.50

1.00

1.50

2.00

2.50

issue1 issue2 issue3 issue4n
o

rm
al

iz
ed

 c
y

cl
es

 t
o

 N
O

E
D

 

181.mcf-delay 1

NOED
SCED
DCED

CASTED

0.00

0.50

1.00

1.50

2.00

2.50

3.00

issue1 issue2 issue3 issue4n
o

rm
al

iz
ed

 c
y

cl
es

 t
o

 N
O

E
D

 

181.mcf-delay 2

NOED
SCED
DCED

CASTED

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

issue1 issue2 issue3 issue4n
o

rm
al

iz
ed

 c
y

cl
es

 t
o

 N
O

E
D

 

181.mcf-delay 3

NOED
SCED
DCED

CASTED

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50

issue1 issue2 issue3 issue4n
o

rm
al

iz
ed

 c
y

cl
es

 t
o

 N
O

E
D

 

181.mcf-delay 4

NOED
SCED
DCED

CASTED

Figure 6. Performance for delays of 1 to 4 and issue-width per cluster in the range of 1 to 4, normalized to NOED for each issue-width (part 1).



0.00

0.50

1.00

1.50

2.00

2.50

3.00

issue1 issue2 issue3 issue4n
o
rm

al
iz

ed
 c

y
cl

es
 t

o
 N

O
E

D

 

197.parser-delay 1

NOED
SCED
DCED

CASTED

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

issue1 issue2 issue3 issue4n
o
rm

al
iz

ed
 c

y
cl

es
 t

o
 N

O
E

D

 

197.parser-delay 2

NOED
SCED
DCED

CASTED

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

issue1 issue2 issue3 issue4n
o
rm

al
iz

ed
 c

y
cl

es
 t

o
 N

O
E

D

 

197.parser-delay 3

NOED
SCED
DCED

CASTED

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50
5.00

issue1 issue2 issue3 issue4n
o
rm

al
iz

ed
 c

y
cl

es
 t

o
 N

O
E

D

 

197.parser-delay 4

NOED
SCED
DCED

CASTED

0.00

0.50

1.00

1.50

2.00

2.50

3.00

issue1 issue2 issue3 issue4n
o
rm

al
iz

ed
 c

y
cl

es
 t

o
 N

O
E

D

 

avg-delay 1

NOED
SCED
DCED

CASTED

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

issue1 issue2 issue3 issue4n
o
rm

al
iz

ed
 c

y
cl

es
 t

o
 N

O
E

D

 

avg-delay 2

NOED
SCED
DCED

CASTED

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

issue1 issue2 issue3 issue4n
o
rm

al
iz

ed
 c

y
cl

es
 t

o
 N

O
E

D

 

avg-delay 3

NOED
SCED
DCED

CASTED

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50
5.00

issue1 issue2 issue3 issue4n
o
rm

al
iz

ed
 c

y
cl

es
 t

o
 N

O
E

D

 

avg-delay 4

NOED
SCED
DCED

CASTED

Figure 7. Performance for delays of 1 to 4 and issue-width per cluster in the range of 1 to 4, normalized to NOED for each issue-width (part 2).

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

issue1 issue2 issue3 issue4n
o

rm
al

iz
ed

 c
y

cl
es

 t
o

 i
ss

u
e 

1

 

cjpeg-delay 1

NOED
SCED
DCED

CASTED

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

issue1 issue2 issue3 issue4n
o

rm
al

iz
ed

 c
y

cl
es

 t
o

 i
ss

u
e 

1

 

h263dec-delay 1

NOED
SCED
DCED

CASTED

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

issue1 issue2 issue3 issue4n
o

rm
al

iz
ed

 c
y

cl
es

 t
o

 i
ss

u
e 

1

 

mpeg2dec-delay 1

NOED
SCED
DCED

CASTED

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

issue1 issue2 issue3 issue4n
o

rm
al

iz
ed

 c
y

cl
es

 t
o

 i
ss

u
e 

1

 

h263enc-delay 1

NOED
SCED
DCED

CASTED

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

issue1 issue2 issue3 issue4n
o

rm
al

iz
ed

 c
y

cl
es

 t
o

 i
ss

u
e 

1

 

175.vpr-delay 1

NOED
SCED
DCED

CASTED

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

issue1 issue2 issue3 issue4n
o

rm
al

iz
ed

 c
y

cl
es

 t
o

 i
ss

u
e 

1

 

181.mcf-delay 1

NOED
SCED
DCED

CASTED

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

issue1 issue2 issue3 issue4n
o

rm
al

iz
ed

 c
y

cl
es

 t
o

 i
ss

u
e 

1

 

197.parser-delay 1

NOED
SCED
DCED

CASTED

Figure 8. Benchmark ILP scaling.

the overhead of DCED against NOED increases as the issue-

width increases in Fig.6 and 7.

5) SCED vs DCED: A more interesting comparison is

DCED against SCED. SCED performs better in wider-issue

cases because the heavy SCED code expands effectively to

the available issue-slots. DCED however, cannot reach these

levels of performance, as it always suffers from the inter-

core latency upon checks. Things become worse for DCED

when the delay is greater than or equal to three. In these

cases, the communication cost between the two cores is that

big that DCED performs poorly. On the other hand, when the

issue-width and the inter-core latency remains low, DCED

easily outperforms the resource constrained SCED.

6) CASTED: In the majority of cases, CASTED can at

least match the performance of the best performing (SCED

or DCED) and in some cases it can even outperform the

best. For instance, in Fig.6 h263dec-d1 for issue-width 1, the

best non-adaptive is DCED and CASTED behaves similar

to this technique. The ability of CASTED to adapt the

error detection code in every configuration has a positive

impact on its slowdown against NOED. The slowdown

varies from 1.19 to 2.1 (1.58 on average). Upon low issue

widths, CASTED adapts to DCED which is less resource

constrained than SCED.

Furthermore, in some cases CASTED outperform the best

non-adaptive. This is because CASTED not only distributes

the error detection code across cores (as DCED does) but

it also distributes the original code if profitable. This leads

to performance improvements of up to 11.4% (in cjpeg for

issue 2 delay 2). As the issue-widths and delays increase,

DCED is not the preferable method anymore. Instead SCED

becomes the most efficient approach. As we can see, at that

point, CASTED no longer adapts to DCED, but instead it

adapts to SCED. In this case too, CASTED can outperform

SCED due to the exploitation of the available resources on

the distant core. The performance improvements are up to



21.2% (in cjpeg issue 2 delay 3).

C. Fault Coverage Evaluation

The fault injection results presented in this paper are

generated using SKI IA-64 simulator [2]. The simulator

was modified to inject errors at the output registers of

instructions, which is common practice in the literature

[23][36][34].

The fault coverage results are produced with Monte Carlo

simulations. Initially, each original binary is profiled in order

to count the number of dynamic instructions. Then, the fault

injection takes place as follows: a dynamic instruction is

randomly selected and one of its outputs is randomly picked

for injection and a random bit of the register output is

flipped. Errors are injected into general purpose, floating

point and predicate registers. This process is repeated 300

times for each benchmark.

Original binaries are injected with one error per run.

The binaries that support error detection are much larger

(2.4x larger on the average than the originals). A fair

comparison between the original code and the error detection

code requires keeping the error rate fixed. Thus, the error

detection codes are injected with one error per the number

of dynamic instructions of the original binary.

The output of each Monte Carlo trial is classified into one

of the following five categories:

1) Benign Errors (aka as masked errors) are the errors

that do not affect program’s output and they produce

the same output and exit code as the good execution.

2) Detected are the errors that CASTED algorithm suc-

cessfully detects.

3) Exceptions are indications of transient errors [35].

Since they can be easily caught by a custom exception

handler, they are usually part of the detected errors

(as in [36]). In our case however, we show them as a

separate type of errors for clarity.

4) Data Corrupt Errors are the errors that cause wrong

outputs without being detected.

5) Time out Errors are the errors that result in infinite

execution and they are detected by the time-out feature

of our simulator.

Fig.9 verifies that CASTED is as good as other high

reliability methodologies. In most of the cases, there are

not data-corruption or time-out errors. The presence of data

corruption errors after applying CASTED, SCED or DCED

is mainly attributed to the fact that these techniques cannot

detect errors that occur in the system’s library functions

since the compiler does not have access to the library source

codes to protect them. On the contrary, in some related work

([9][23][34][36]) system libraries are excluded from fault

injection, which is somewhat unrealistic. If the source code

of the system libraries is available, they can also be compiled

with CASTED and be protected against transient errors.

Another interesting point extracted from Fig.9 is that

encoding benchmarks (cjpeg, h263enc) are less prone to

errors. This is intuitive as there is some data compression

(masking) involved. Finally, we observe that most of the

errors are exceptions. This is desirable since exceptions can

be easily detected by an exception handler.

In Fig.10, it is shown how CASTED error detection

algorithm behaves under different architecture configurations

for the h263dec benchmark. The fault coverage, as expected,

is not affected by the underlying architecture configuration

and CASTED retains the same level of reliability. The

variation in fault-coverage results is mainly attributed to

statistical deviation. Overall, Fig.6,7 and Fig.9,10 validate

our previous claim that CASTED can adapt to different

architecture configurations without any impact on reliability.

V. RELATED WORK

Code redundancy can take various forms: instruction,

thread and process redundancy. EDDI[20] and SWIFT[23]

are two techniques based on instruction-level redundancy

where the error detection is done by code duplication. The

main advantage of these approaches is that they provide error

detection with no additional hardware support. However,

the replicated code and the checking code have significant

impact on performance. In [9] and [14], they tackle this

problem by reducing the number of replicated instructions.

Shoestring[9] is based on the assumption that some transient

errors can be detected by the operating system. As a result,

a decent amount of instructions need not be replicated or

checked. In [14], the number of replicated instructions is

selected according to the desired threshold of performance

degradation (or fault-coverage). SRMT[34] has its redundant

code in a second thread which runs on a different core

from the main thread. In these approaches, the communica-

tion overhead becomes performance bottleneck. DAFT[36]

improves this by decoupling the execution of the main

thread from the checker. All schemes are summarized and

compared against CASTED in Table III.

Process level redundancy was pioneered by Shye[26]

and optimized by Zhang[11]. The application gets launched

twice and the two processes run simultaneously. An error

is detected upon program termination or by faulty I/O

operations of any of the processes. Process level redundancy

has small overhead since it checks less values than other

techniques, but this comes with the cost of maintaining

multiple memory states.

Thread level redundancy was introduced by AR-SMT

[24]. This work proposed the idea of redundant multi-

threading (RMT) on SMT cores. The active thread executes

the program and puts its results on a delay buffer. The

redundant thread re-executes the same instruction stream and

compares the results that it produces with the ones from the

delay buffer. The committed state of the redundant thread is

also used as a recovery checkpoint.



0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

N
O

ED

SC
ED

D
C
ED

C
A

STED

E
rr

o
r 

D
is

tr
ib

u
ti

o
n

 

cjpeg

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

N
O

ED

SC
ED

D
C
ED

C
A

STED

E
rr

o
r 

D
is

tr
ib

u
ti

o
n

 

h263dec

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

N
O

ED

SC
ED

D
C
ED

C
A

STED

E
rr

o
r 

D
is

tr
ib

u
ti

o
n

 

mpeg2dec

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

N
O

ED

SC
ED

D
C
ED

C
A

STED

E
rr

o
r 

D
is

tr
ib

u
ti

o
n

 

h263enc

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

N
O

ED

SC
ED

D
C
ED

C
A

STED

E
rr

o
r 

D
is

tr
ib

u
ti

o
n

 

175.vpr

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

N
O

ED

SC
ED

D
C
ED

C
A

STED

E
rr

o
r 

D
is

tr
ib

u
ti

o
n

 

181.mcf

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

N
O

ED

SC
ED

D
C
ED

C
A

STED

E
rr

o
r 

D
is

tr
ib

u
ti

o
n

 

197.parser

time−out
data−corruption

exceptions
detected
benign

Figure 9. Fault-coverage for all benchmarks for issue-width=2 and delay=2.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

issue1

issue2

issue3

issue4

E
rr

o
r 

D
is

tr
ib

u
ti

o
n

 

h263dec SCED delay1

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

issue1

issue2

issue3

issue4

E
rr

o
r 

D
is

tr
ib

u
ti

o
n

 

h263dec SCED delay2

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

issue1

issue2

issue3

issue4

E
rr

o
r 

D
is

tr
ib

u
ti

o
n

 

h263dec SCED delay3

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

issue1

issue2

issue3

issue4

E
rr

o
r 

D
is

tr
ib

u
ti

o
n

 

h263dec SCED delay4

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

issue1

issue2

issue3

issue4

E
rr

o
r 

D
is

tr
ib

u
ti

o
n

 

h263dec DCED delay1

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

issue1

issue2

issue3

issue4

E
rr

o
r 

D
is

tr
ib

u
ti

o
n

 

h263dec DCED delay2

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

issue1

issue2

issue3

issue4

E
rr

o
r 

D
is

tr
ib

u
ti

o
n

 

h263dec DCED delay3

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

issue1

issue2

issue3

issue4
E

rr
o

r 
D

is
tr

ib
u

ti
o

n

 

h263dec DCED delay4

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

issue1

issue2

issue3

issue4

E
rr

o
r 

D
is

tr
ib

u
ti

o
n

 

h263dec CASTED delay1

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

issue1

issue2

issue3

issue4

E
rr

o
r 

D
is

tr
ib

u
ti

o
n

 

h263dec CASTED delay2

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

issue1

issue2

issue3

issue4

E
rr

o
r 

D
is

tr
ib

u
ti

o
n

 

h263dec CASTED delay3

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

issue1

issue2

issue3

issue4

E
rr

o
r 

D
is

tr
ib

u
ti

o
n

 

h263dec CASTED delay4

Figure 10. The fault-coverage of h263dec benchmark for NOED,SCED,DCED and CASTED for issue 1 to 4 and delay 1 to 4 .

Speed up Factors Target Code

architecture placement

EDDI[20] - wide single-core fixed

SWIFT[23] reduction of checking points wide single-core fixed

SHOESTRING[9] partial redundancy single-core fixed

Compiler-assisted ED [14] partial redundancy single-core fixed

SRMT[34] partially synchronized threads dual-core fixed

DAFT[36] decoupled threads dual-core fixed

CASTED adaptivity tightly-coupled cores adaptive

Table III
COMPILER-BASED ERROR DETECTION SCHEMES.



There are several works that are based on AR-SMT

and extend it. [22] introduces Simultaneous and Redundant

Threaded (SRT) processors that take advantage of an SMT

processor’s extra thread contexts. Similarly, Mukherjee[19]

used the SMT idea on CMPs proposing Chip-level Re-

dundant Threading (CRT). SRTR[33] and CRTR[12] are

extended versions of the latter two methodologies in the

sense that they include recovery mechanisms. La Frieda[15]

and Smolens[28] presented techniques that exploit the idle

cores for redundant thread execution. The main disadvantage

of redundant multi-threading is that it reduces the system’s

total throughput because it occupies more thread contexts

and hardware resources.

In hardware error detection, correctness is checked on

hardware. Hardware-based designs include the watchdog

processors by McCluskey[16] and by Austin[4]. The main

idea is that a smaller and simpler in design processor,

which is considered safer, follows the execution of the main

processor.

Commercial high-reliable processor systems are designed

with hardware redundancy, too. G5[27][30], is designed with

replicated instruction and data execution units that have their

outcome checked. HP NonStop series processors [5] are

designed in TMR (triple-modular redundancy) and hardware

voters guarantee the correct execution of the program. In

Power 6 [21] and in Fujitsu’s SPARC64 [3], they use

parity and residue checking to protect their systems against

transient errors.

VI. CONCLUSION

This paper introduces CASTED, a novel software-based

error detection scheme for architectures with tightly-coupled

cores. CASTED effectively distributes the impact of the

error detection overhead across the available resources and

successfully adapts to the requirements of each configura-

tion. This improves performance without affecting the fault

coverage across the architecture configurations. It reduces

the overall slowdown by 7.5% against the single-core error

detection and 24.7% against the dual-core case.

REFERENCES

[1] GCC: GNU compiler collection. http://gcc.gnu.org.

[2] SKI, An IA64 instruction set simulator.
http://ski.sourceforge.net.

[3] H. Ando, Y. Yoshida, A. Inoue, I. Sugiyama, T. Asakawa,
K. Morita, T. Muta, T. Motokurumada, S. Okada, H. Ya-
mashita, et al. A 1.3-GHz Fifth Generation SPARC64
Microprocessor. DAC,2003.

[4] T. Austin. DIVA: A reliable substrate for deep submicron
microarchitecture design. In MICRO, 1999.

[5] D. Bernick, B. Bruckert, P. Vigna, D. Garcia, R. Jardine,
J. Klecka, and J. Smullen. Nonstop advanced architecture.
DSN, 2005.

[6] C. Constantinescu. Trends and challenges in VLSI circuit
reliability. MICRO, 2003.

[7] J. Ellis. Bulldog: A compiler for VLIW architectures. Tech-
nical report, Yale Univ., 1985.

[8] P. Faraboschi, G. Desoli, and J. Fisher. Clustered instruction-
level parallel processors. Technical report, Hewlett Packard
Laboratories, 1999.

[9] S. Feng, S. Gupta, A. Ansari, and S. Mahlke. Shoestring:
probabilistic soft error reliability on the cheap. ASPLOS,
2010.

[10] J. Fritts, F. Steiling, and J. Tucek. Mediabench II Video:
Expediting the next generation of video systems research.
SPIE, 2005.

[11] Y. Ghosh, J. Huang, J. Lee, S. Mahlke, and D. August.
Runtime asynchronous fault tolerance via speculation. CGO,
2012.

[12] M. Gomaa, C. Scarbrough, T. Vijaykumar, and I. Pomeranz.
Transient-fault recovery for chip multiprocessors. ISCA, 2003.

[13] J. Henning. SPEC CPU2000: Measuring CPU performance
in the new millennium. Computer, 2000.

[14] J. Hu, F. Li, V. Degalahal, M. Kandemir, N. Vijaykrishnan,
and M. Irwin. Compiler-assisted soft error detection under
performance and energy constraints in embedded systems.
ACM Transactions on Embedded Computing Systems, 2009.

[15] C. LaFrieda, E. Ipek, J. Martinez, and R. Manohar. Utilizing
dynamically coupled cores to form a resilient chip multipro-
cessor. DSN, 2007.

[16] A. Mahmood and E. McCluskey. Concurrent error detection
using watchdog processors-a survey. IEEE Transactions on
Computers, 1988.

[17] C. McNairy and D. Soltis. Itanium 2 processor microarchi-
tecture. MICRO, 2003.

[18] S. Michalak, K. Harris, N. Hengartner, B. Takala, and S. Wen-
der. Predicting the number of fatal soft errors in Los Alamos
national laboratory’s supercomputer. IEEE Transactions on
Device and Materials Reliability, 2005.

[19] S. Mukherjee, M. Kontz, and S. Reinhardt. Detailed de-
sign and evaluation of redundant multithreading alternatives.
ISCA, 2002.

[20] N. Oh, P. Shirvani, and E. McCluskey. Error detection
by duplicated instructions in super-scalar processors. IEEE
Transactions on Reliability, 2002.

[21] K. Reick, P. Sanda, S. Swaney, J. Kellington, M. Mack,
M. Floyd, and D. Henderson. Fault-tolerant design of the
IBM Power6 microprocessor. MICRO, 2008.

[22] S. Reinhardt and S. Mukherjee. Transient fault detection
via simultaneous multithreading. ACM SIGARCH Computer
Architecture News, 2000.



[23] G. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. Au-
gust. SWIFT: Software implemented fault tolerance. CGO,
2005.

[24] E. Rotenberg. AR-SMT: A microarchitectural approach to
fault tolerance in microprocessors. International Symposium
on Fault-Tolerant Computing, 1999.

[25] H. Sharangpani and H. Arora. Itanium processor microarchi-
tecture. IEEE MICRO, 2000.

[26] A. Shye, T. Moseley, V. Reddi, J. Blomstedt, and D. Connors.
Using process-level redundancy to exploit multiple cores for
transient fault tolerance. DSN, 2007.

[27] T. Slegel et al. Ibm’s s/390 G5 microprocessor design.
MICRO, 1999.

[28] J. Smolens, B. Gold, B. Falsafi, and J. Hoe. Reunion:
Complexity-effective multicore redundancy. MICRO, 2006.

[29] D. Sorin. Fault tolerant computer architecture. Synthesis
Lectures on Computer Architecture, Morgan & Claypool
Publishers, 2009.

[30] L. Spainhower and T. Gregg. IBM S/390 parallel enterprise
server G5 fault tolerance: A historical perspective. IBM
Journal of Research and Development, 1999.

[31] J. Srinivasan, S. Adve, P. Bose, and J. Rivers. The impact of
technology scaling on lifetime reliability. DSN, 2004.

[32] M. Taylor, J. Kim, et al. The RAW microprocessor: A
computational fabric for software circuits and general-purpose
programs. MICRO, 2002.

[33] T. Vijaykumar, I. Pomeranz, and K. Cheng. Transient-fault
recovery using simultaneous multithreading. ISCA, 2002.

[34] C. Wang, H. Kim, Y. Wu, and V. Ying. Compiler-managed
software-based redundant multi-threading for transient fault
detection. CGO, 2007.

[35] N. Wang and S. Patel. ReStore: Symptom-based soft error
detection in microprocessors. IEEE Transactions on Depend-
able and Secure Computing, 2006.

[36] Y. Zhang, J. Lee, N. Johnson, and D. August. DAFT:
Decoupled Acyclic Fault Tolerance. PACT, 2010.

[37] H. Zhong, S. Lieberman, and S. Mahlke. Extending multicore
architectures to exploit hybrid parallelism in single-thread
applications. HPCA, 2007.


