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Abstract. The performance of statically scheduled VLIW processors is
highly sensitive to the instruction scheduling performed by the compiler.
In this work we identify a major deficiency in existing instruction schedul-
ing for VLIW processors. Unlike most dynamically scheduled processors,
a VLIW processor with no load-use hardware interlocks will completely
stall upon a cache-miss of any of the operations that are scheduled to run
in parallel. Other operations in the same or subsequent instruction words
must stall. However, if coupled with non-blocking caches, the VLIW pro-
cessor is capable of simultaneously resolving multiple loads from the same
word. Existing instruction scheduling algorithms do not optimize for this
VLIW-specific problem.
We propose Aligned Scheduling, a novel instruction scheduling algorithm
that improves performance of VLIW processors with non-blocking caches
by enabling them to better cope with unpredictable cache-memory laten-
cies. Aligned Scheduling exploits the VLIW-specific cache-miss semantics
to efficiently align cache misses on the same scheduling cycle, increasing
the probability that they get serviced simultaneously. Our evaluation
shows that Aligned Scheduling improves the performance of VLIW pro-
cessors across a range of benchmarks from the Mediabench II and SPEC
CINT2000 benchmark suites up to 20%.

1 Introduction

Very Long Instruction Word (VLIW) processors are wide-issue statically sched-
uled processors. They are used in a wide range of domains: in GPUs (AMD’s
VLIW-5 architecture on Radeon GPUs and in APUs [4]), in embedded systems
as DSPs (Texas Instrument’s VelociTI, HP/ST’s Lx [8], Analog’s TigerSHARC
[11], BOPS’ ManArray [23]) and as targets of dynamic binary translation (e.g.
Transmeta’s Crusoe [5, 14]). A VLIW-like architecture (with many unique dy-
namic hardware additions for run-time optimizations) is also used in servers
(Intel’s Itanium/Itanium2 EPIC architecture [20, 27]).

Compared to dynamically scheduled processors, VLIW designs operate at an
attractive power/performance point. This is because they are by design both
simple (no dynamic scheduling hardware [10]) and wide-issue. They rely on
the compiler’s instruction scheduling pass to optimally schedule instructions.
Instruction scheduling algorithms re-arrange the instructions of the input pro-
gram to hide pipeline latencies. Schedulers for VLIW processors in particular,
explicitly express instruction level parallelism (ILP) in long instruction words.

⋆ This work was supported in part by the EC under grant ERA 249059 (FP7).
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The simplicity of the VLIW hardware design, however, comes at a cost:
VLIW processors are more sensitive to dynamic latencies triggered by micro-
architectural events, such as cache misses, than their dynamically scheduled
counterparts. This is because a traditional VLIW processor comes to a complete
halt upon a cache miss caused by any instruction in the long instruction word,
due to the absence of load-use hardware interlocks. Therefore even if there exist
instructions that could execute while the miss is being serviced, they do not
because the VLIW hardware does not allow it. We refer to these VLIW cache-
miss semantics as Stall-On-Miss (SOM) (Fig.1c).

Performance can be improved once we deviate from the VLIW design philos-
ophy and introduce data hazard detection in hardware. This limits the processor
stalls to the cases when a VLIW instruction tries to use data that is not avail-
able (brought in by the Load-miss). We refer to this model as Stall-On-Use
(SOU) (Fig.1d). In this model, the long instruction words remain intact and the
dependencies are tracked at the VLIW word level.

If we apply a full-blown register scoreboarding in hardware, we can break
down the instruction words into individual instructions and we can allow each
instruction to issue and stall independently of the others (Fig.1e). This allows
for optimal pipeline throughput as the execution only stalls when dictated by
the data dependencies. This approach, however, requires hardware components
that are normally found in dynamically scheduled superscalar processors, thus
deviating from the VLIW design concept of keeping the hardware simple. This is
the reason why most VLIW processors are designed to be either SOM or SOU.
In this work we only consider the SOM and SOU models.

A SOU architecture requires Non-Blocking caches [15] to function. These
caches are equipped with a simple hardware mechanism that allows them to
resolve multiple misses simultaneously. Their impact on performance on dynam-
ically scheduled processors is significant since they decrease the pipeline stalls.
The performance improvement however, on a VLIW processor with SOM se-
mantics is not as impressive under existing instruction schedulers.
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Fig. 1. Dynamic Schedules of DFG (a) as we increase hardware complexity.

Most schedulers can effectively deal with regular long-latency instructions,
such as integer division. They try to hide long latencies by executing other low-
latency instructions in parallel. Existing instruction schedulers consider Load
instructions as regular instructions of some latency: either low-latency (cache-
hit), high-latency (cache miss) or something in between. This effectively changes
how the scheduler treats the loads: as hits, misses or in between. This approach
works fine for dynamically-scheduled processors. The Stall-On-Miss semantics of
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Fig. 2. VLIW semantics of a regular long-latency instruction (a) VS a cache-miss (b).

a VLIW processor however, require special treatment by the instruction sched-
uler. Fig.2 shows that trying to hide load miss latency by scheduling other in-
structions in parallel is not suitable for VLIWs. This is because on a VLIW
with no load-use interlocks, the semantics of a regular long-latency instruction
(Non-Load instruction Fig.2a) are different from a cache-miss of equal latency
(Load instruction Fig.2b). On one hand the high-latency regular instruction A in
Fig.2a can overlap its execution with B and C. On the other hand, cache-miss A
in Fig.2b cannot overlap with instructions C or D due to Stall-On-Miss seman-
tics. Therefore such VLIW architectures require a radically different scheduling
approach for hiding cache-miss latencies.

This paper proposes Aligned Scheduling, a novel instruction scheduling algo-
rithm for statically scheduled VLIW processors with non-blocking caches that
treats Load instructions differently than existing schemes. It improves the toler-
ance of VLIW processors to cache-miss latencies by exploiting four concepts:

1. The VLIW-specific Stall-On-Miss or Stall-On-Use cache-miss semantics.
2. Non-blocking caches ([15, 28]), that can service multiple cache misses si-

multaneously.
3. The statically provable Memory-Level Parallelism (MLP), that allows mul-

tiple memory Load operations to execute on the same VLIW cycle.
4. The explicit instruction parallelism of VLIW instruction words.
These concepts allow the instruction scheduler to hide cache-miss latencies

by aligning memory Load instructions together on the same cycle, in a smart
way. In this way, during execution, the probability that multiple Load instruc-
tions miss simultaneously increases. We refer to this effect of multiple aligned
Load instructions missing simultaneously as miss overlapping (Fig.3). Aligned
Scheduling proves particularly effective for VLIWs with no load-use hardware
interlocks (SOM), but as shown in the Section 5, it could potentially benefit
SOU under high miss latency conditions.
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2 Motivation

The main concept that Aligned Scheduling is based on is the idea of miss overlap-
ping (Fig.3). If the architecture supports non-blocking caches, then more than a
single outstanding cache miss can be serviced simultaneously. Instruction sched-
ulers currently do not exploit this feature of the architecture and tend to generate
schedules as in Fig.3a, which perform well when there are no or few cache misses
(Fig.3a i,ii) but are suboptimal when there are bursts of cache misses (Fig.3a
iii). An optimized scheduler for VLIW should exploit the non-blocking caches to
schedule loads in parallel, whenever this is profitable. Aligned Scheduling does
so selectively and generates a schedule which still performs well under low cache
miss conditions (Fig.3b i,ii) but manages to outperform the existing approaches
under bursts of cache misses (Fig.3b iii).

The motivating examples (Fig.4(a) and Fig.4(b)) describe two different but
complementary heuristics that are used in Aligned Scheduling. Each example is
based on its own Data Flow Graph (DFG), Fig.4(a)a and Fig.4(b)a respectively.
Both DFGs contain Load instructions (green) and non-Load instructions (light
gray). The examples compare the schedules generated by two schedulers: i) The
baseline scheduler (top sub-figures b,d,f), a state-of-the-art list-scheduler (like
the scheduler in GCC [1]) and ii) Aligned Scheduler (bottom sub-figures c,e,g).
The colors on the DFG and schedules are consistent. Red represents a Load that
misses in the cache. The leftmost column of each figure (sub-figures b,c) shows
the static schedule produced by the scheduler. These schedules also happen to
match the dynamic (run-time) schedule when all Load instructions are hits. This
is why in both sub-figures b and c the loads are green, suggesting a cache-hit.
The other two columns show the case when all Loads miss: The center column
(sub-figures d,e) corresponds to a Stall-On-Miss (SOM) architecture and the
rightmost column (sub-figures f,g) corresponds to Stall-On-Use (SOU).

The baseline is a list scheduler, like the default scheduler in most industrial-
strength compilers (e.g. GCC). It prioritizes the ready instructions based on a
priority function (in this case the height of each node in the graph), and emits the
highest priority ready instruction into the schedule. Aligned Scheduling is also
a list-scheduler based algorithm, but differs from the baseline in the instruction
selection process (see Fig.5 “Aligned-select”). The performance of a scheduler
is inversely proportional to the dynamic schedule length. In this example we
are interested in comparing the two schedulers in cache-hit (sub-figures b,c) and
cache-miss (sub-fiures d,e and f,g) scenarios.

Both examples (Fig.4(a) and Fig.4(b)) motivate the main concept of Aligned
Scheduling, which is that the VLIW stall semantics require that a good schedule,
resilient to misses, should have Load instructions scheduled in parallel on the
same cycle, so that the cache misses can overlap in time.

2.1 Hoisting of Low-Priority Loads (HLPL)

The first example (Fig.4(a)) shows that a scheduler that hoists low-priority Loads
by giving preference to them instead of other higher priority instructions, can
improve performance under a burst of Load misses.

The highest priority instruction of the DFG of Fig.4(a)a is Load A. At cycle
0, the scheduler’s ready list contains A, C and E. Since A is the instruction with
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Fig. 4. Aligned Scheduling heuristics. The numbers on the DFG are the instr. priorities.

the highest priority (4), it gets issued at cycle 0. Next, an unmodified priority-
based list scheduler (Fig.4(a) b,d,f) would select C with priority 3. The HLPL
heuristic of Aligned Scheduling, though, will select E with priority 2, since this
will allow for both Loads (A and E) to execute on the same cycle (Fig.4(a)c,e,g).

If at run-time none of the Loads miss, the dynamic schedule will look exactly
like the static one (Fig.4(a)b). If, however, at run-time both Load instructions (A
and E) miss, then the execution will look as in Fig.4(a)d or Fig.4(a)f, depending
on the stall semantics. In this case, the run-time performance of the Baseline
scheduler is worse than the Aligned one for both Stall-On-Miss and Stall-On-Use
semantics.

The Aligned-HLPL heuristic makes sure that the low-priority Load instruc-
tions (like Load E), get hoisted and scheduled on the same cycle as high-priority
Load instructions, like Load A on cycle 0 (Fig.4(a)c). This suggests that un-
like the baseline scheduler, in Aligned-HLPL instruction priority does not al-
ways drive the scheduling algorithm. Instead low-priority Load instructions may
take precedence over high-priority non-Load instructions. For example the high-
priority non-Load instruction C gets deferred to a later cycle than the lower-
priority E (Fig.4(a)c). This leads to better performance under bursts of misses,
and still a good schedule under the “all HITs” case (Fig.4(a) c,e,g).

2.2 Lowering of Low-Priority Loads (LLPL)

The previously described HLPL heuristic can only work if a high-priority load is
scheduled first on the current scheduling cycle. The LLPL heuristic complements
HLPL, by taking action when a high-priority non-Load instruction is scheduled
first on the current scheduling cycle.

The LLPL heuristic (Fig.4(b)) avoids scheduling low priority Load instruc-
tions if the highest priority instruction on the current scheduling cycle is not a
Load. Even if there are no instructions left to schedule but Loads, LLPL will de-
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fer them to some later cycle. This is beneficial for two reasons: 1. It guarantees
that the current cycle remains stall-free, since there are no Load instructions
to miss. 2. It increases the chances that more Load instructions get grouped
together and aligned on a future cycle.

LLPL can be better explained through the example of Fig.4(b). As in Section2.1,
the Baseline scheduler is driven purely by instruction priorities and issue slot
availability. Therefore Load C gets scheduled on a different cycle than Load B,
as shown in Fig.4(b)b.

Aligned-LLPL however is not guided solely by the instruction priorities. In-
stead it focuses on deferring low-priority Load instructions of the ready list (e.g.,
C at cycle 0 which is not the highest priority instruction) to a later cycle as long
as the high priority instruction is not a Load (A at cycle 0). The end result is
that instruction C gets scheduled later (at cycle 1) along with Load B.

When all instructions are hits (“all HITs” scenario) both the Baseline and
Aligned Scheduling-LLPL perform equally well (Fig.4(b)b and Fig.4(b)c). When
both Loads miss however, Aligned-LLPL is faster (Fig.4(b)d,f vs Fig.4(b)e,g).
The speedup, is once again due to the overlapping of miss-latencies.

3 Aligned Scheduling

3.1 Overview

priority

Ready list

DFG Issue instr. sel.
by AlignedSched

update Ready list

Ready list

Select instruction

Best Instr

Aligned select

Fig. 5. Aligned Scheduling structure.

Aligned Scheduling is based on the commonly used list-scheduling algorithm.
An overview of how the common (baseline) list scheduling algorithm works is
shown in Fig.5, without the “Aligned select” component.

The input to list scheduling is a Data Flow Graph (DFG) with its nodes
tagged with priorities. The priority can be calculated based on various heuris-
tics, a common one being the height from the bottom of the DFG. With the term
“ready instructions” we mean the instructions that have all their inputs calcu-
lated and available to them. The ready instructions of the DFG are placed into a
ready list and are sorted based on their priority. The highest-priority instruction
is selected and scheduled. Scheduling an instruction causes its DFG successors
to become ready and to be added to the ready list. The scheduler steps to the
next cycle under two conditions: 1) The ready list is empty, meaning that there
are no available instructions to schedule 2) The current cycle is full, so no more
instructions can be scheduled in it. This process repeats until all instructions in
the DFG are scheduled.

Aligned Scheduling (Fig.5) adds the “Aligned select” phase to the common
list scheduling algorithm. This process is placed in between sorting the ready list
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and scheduling an instruction. It uses the ready instruction list and the highest
priority instruction of the current cycle to make an informed decision on selecting
the instruction that should be scheduled at the current scheduling cycle. This is
where HLPL and LLPL are used. The instruction that “Aligned select” returns,
gets scheduled at the current cycle.

Although Aligned Scheduling is built on top of GCC’s EBB-region-based
scheduler, in principle the “Aligned select” step can be plugged in to other
schedulers as well (e.g., the Selective Scheduler ([21]), Modulo Scheduling [16,
24, 6, 18] etc.) without major modifications to these algorithms.

The Aligned Scheduling algorithm can be logically split in two parts: 1.
The main driver function (Alg.1), which performs the high-level actions of a
list-scheduler. 2. The Aligned Scheduling selection function (Alg.2) which is
used for the selection of the instruction that gets scheduled by the main driver
function.

Algorithm 1. Aligned Scheduling algorithm.

1 aligned ()

2 {

3 /* While there are unscheduled isntr. */
4 while (instructions left to schedule)

5 update READY_LIST with ready +

→֒deferred instr.

6 sort READY_LIST based on priorities

7 BEST_INSTR = READY_LIST [0]

8 while (READY_LIST not empty)

9 INSN=aligned_select(BEST_INSTR,

→֒READY_LIST)

10 if (no INSN selected)

11 break

12 if (INSN can be sched. at CYCLE)

13 schedule INSN

14 remove INSN from READY_LIST

15 /* If failed, defer to cycle+1 */
16 if (INSN unscheduled)

17 remove INSN from READY_LIST and

→֒re-insert it at CYCLE + 1

18 /* READY_LIST is empty */
19 CYCLE ++

20 }

Algorithm 2. Aligned Scheduling instruction
selection

1 /*In1: Highest prio. instr. of curr cycle
2 In2: List of ready instr. of curr cycle
3 Out: Instruction to schedule on cycle*/
4 aligned_select (BEST_INSTR, READY_LIST)

5 {

6 if (BEST_INSTR is LOAD)

7 if (HLPL)

8 for INSTR in sorted READY_LIST

9 if (INSTR is LOAD)

10 return INSTR

11 return READY_LIST [0]

12 else if (BEST_INSTR is not a LOAD)

13 if (LLPL)

14 for INSTR in sorted READY_LIST

15 if (INSTR is not LOAD)

16 return INSTR

17 else

18 return READY_LIST [0]

19 else

20 return READY_LIST [0]

21 }

3.2 Aligned Scheduling driver

The main driver function (Alg.1) performs the main actions of a list-scheduling
algorithm adjusted to work with the Aligned Scheduling heuristics. While there
are instructions left to schedule (line 4) it keeps iterating. First, it fills in the
ready list with any ready instruction (line 5), then it sorts the ready list (line 6)
based on the instruction priorities (which is usually the height of the instruction
in the DFG). Next it finds the highest priority instruction for this cycle and
stores it into BEST INSTR (line 7).

The algorithm then schedules the ready instructions one by one (lines 8 - 17).
This part of the algorithm keeps iterating until: 1) the ready list is empty (line
8), or 2) no instruction is selected by the Align-selection function. The ready list
empties in two ways: 1. Scheduled instructions are removed from the ready list 2.
When no more instructions fit in the current cycle (due to insufficient execution
slots) then the ready instructions still get popped out of the ready list without
being scheduled and get deferred to the next cycle (line 17).
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Instructions get selected from the ready list by the “aligned select()” function
(line 9). The implementation of this function is shown in Alg.2. If no instruction
is selected by “aligned select” (i.e. there are no instructions left to schedule in
this cycle), then the algorithm breaks out of the innermost while loop (lines
10-11) to abandon scheduling on the current cycle and to step to the next cycle.
This enables LLPL to leave a cycle partially scheduled even if there are ready
instructions left to schedule. Else, if an instruction has been selected, then it
gets scheduled and removed from the ready list (lines 12-14). If, due to resource
constraints (e.g., no more issue slots) the instruction cannot be scheduled on the
current scheduling cycle, then it is removed from the ready list (lines 16, 17).
Finally, if there are no instructions left in the ready list, it is time to move to
the next scheduling cycle (lines 18, 19) and restart with a fresh ready list at the
top of the outer loop (line 4).

3.3 Aligned Scheduling selection

At the core of the Aligned Scheduling algorithm lies the aligned select ()
function (Alg.2). This function decides which instruction, among the ready ones,
will be executed on the current scheduling cycle. This function makes use of the
HLPL and LLPL heuristics to decide on the instruction selected.

This function exploits the statically (at compile time) analyzable MLP to im-
prove the schedule’s performance of VLIW processors with non-blocking caches
under high cache-miss rate conditions. The end result of the instruction selection
(with the help of the driver function of Alg.1) is a hoisting and lowering of Load
instructions aiming at grouping loads together as much as possible.

Internally, the selection algorithm is composed of two different but com-
plementary heuristics: The “Hoist of Low-Priority Load” (HLPL) heuristic as
demonstrated in the motivation Section 2.1 and the “Lower of Low-Priority
Load” (LLPL) heuristic as discussed in Section 2.2. If both are active, either
HLPL or LLPL executes depending on the type of the highest priority
instruction (BEST INSTR) of the current scheduling cycle (Alg.2, lines 6,12).
If it is a Load then HLPL performs hoisting of other Loads. Else if it is not
a Load, then LLPL forms a Load-free cycle by lowering loads to later cycles.
The insight behind it is that the critical path should be honored. Therefore the
highest priority instruction (BEST INSTR) of the cycle should guide the type
of instructions that are aligned with it. We can enable each or both of these
heuristics by controlling the HLPL and LLPL flags (Alg.2 line 7 and line 13,
respectively).

The instruction hoisting/lowering of Aligned Scheduling is done in a bal-
anced way: 1. The Load hoisting and lowering is mild enough such that the
re-arranged instructions do not replace other highly-critical instructions. This
guarantees acceptable performance on a low cache-miss rate conditions. 2. The
Load hoisting and lowering is aggressive enough that the Load instructions
get grouped together so that we get high miss overlapping and performance
improvements on high cache-miss scenarios.

The first point is achieved by honoring the critical path and always scheduling
the highest priority instruction of the ready list (BEST INSTR) without any
delays (Alg.2 lines 9,15 guarantee this). Also the most critical instruction guides
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the kind of hoisting/lowering that takes place (Alg.2 lines 6,12). The second
point is achieved by selectively hoisting/lowering all lower priority instructions.

HLPL: If BEST INSTR is a Load (Alg.2, line6), then the HLPL heuristic
can be applied (line 7). It iterates over the list of sorted ready instructions
(line 8) and selects the first load instruction encountered (lines 9, 10). If there
are no ready load instructions to choose from, HLPL will select a non-Load
instruction (line 11) as this can only be beneficial. This is because scheduling
non-Load instructions, after all Load instructions have been scheduled on the
cycle, cannot cause any further stalls or delays for this cycle, so it can cause no
harm. Instead, deferring the execution of non-Load instructions to later cycles
can only degrade performance. HLPL will usually not harm performance under
low miss-rate conditions.

LLPL: In the opposite case, if BEST INSTR, the highest priority instruction
of the current cycle, is not a Load (line 12), the LLPL heuristic can be applied.
In short, LLPL creates a Load-free cycle. It does so by deferring the execution of
any Load instruction to future cycles. This is done by iterating across the ready
list (line 14) and selecting only non-Load instructions to schedule (lines 15, 16).
Unlike HLPL, when LLPL is “on” then even if there are no other non-Load
instructions left in the ready list, the algorithm will not select a Load, therefore
the current scheduling cycle will be partially empty. This is good for two reasons:
1. It guarantees that the current cycle does not stall (since it contains no Loads)
2. It enables future co-execution of Load instructions in later cycles. However,
LLPL could potentially harm performance as it deliberately leaves resources
under-utilized. LLPL proves to be an aggressive heuristic for high miss-rate
conditions, but can cause slowdowns on low miss-rate conditions.

Enabling both heuristics is usually the best practice, since the resulting per-
formance is usually better than either them in isolation (see Section 5).

4 Experimental Setup

The target architecture is a statically scheduled Stall-On-Miss/Stall-On-Use
VLIW, that uses the IA64 [27] instruction set due to widespread availability of
tools for this ISA. The architecture has a configurable issue width. It is worth
noting that the real Itanium processor used in servers is based on the EPIC ar-
chitecture, which although looking similar to a VLIW one, has many hardware
features not found in common VLIW architectures. One of these hardware fea-
tures is a hardware register scoreboard. Our target is a common VLIW without
the full-blown register scoreboard of the Itanium.

We have implemented Aligned Scheduling in the instruction scheduling pass
(haifa-sched) of GCC-4.5.0 [1] compiler for IA64.

We simulated the architecture on a modified version of SKI [2], IA64 cycle
accurate simulator that supports a configurable non-blocking cache hierarchy
and both SOM or SOU semantics. The issue width is configurable, ranging from
2 to 4 wide and each issue slot can execute an instruction of any type. The L1
cache is 16K-1way, with a block-size of 64 Bytes and a 1 cycle latency. The L2
cache is 256K-4way with a block size of 128 Bytes and an 8 cycle latency. Both
caches are non-blocking. The access to the main memory takes 150 cycles.

We evaluated Aligned Scheduling on 6 of the Mediabench II video [12] and 6
of the SPEC2000 CINT [3] benchmarks. All benchmarks were compiled with
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several optimizations enabled (-O2) and both schedulers running. We ran all
benchmarks to completion.

5 Results and Analysis

We first present a detailed case study of Aligned Scheduling on the cjpeg bench-
mark of the Mediabench II benchmark suite (Section 5.1). We then present
summarized results for the rest of the benchmarks (Section 5.2).

5.1 Case study: cjpeg

The cjpeg benchmark of the Mediabench II ([12]) video suite is a representative
example for evaluating Aligned Scheduling. This benchmark has a working set of
16KB which is small enough that we can test Aligned Scheduling across a broad
range of cache-miss scenarios (ranging from high miss-rates to low miss-rates)
by simply changing the L1 size.

Fig.6(a) compares the cycle counts of the Aligned Scheduling-{HLPL, LLPL
and BOTH} heuristics against the Baseline scheduling. The comparison is done
over various L1 cache sizes, ranging from 4KB to 32KB 1-way, and on three
different issue widths of the VLIW processor (issue 2-4). The L2 cache is a 256KB
4-way with 8 cycles latency. Fig.6(b),6(c) complements Fig.6(a) by providing
the L1 and L2 miss rates respectively for each case. Finally, Fig.6(d) shows
the amount of overlapping of cache misses and Fig.6(e) shows the average load
latency. These figures provide some important insights on the strengths and
weaknesses of Aligned Scheduling:

a. The first thing to notice in Fig.6(a) is that for the Stall-On-Miss semantics
and small L1 sizes, Aligned Scheduling outperforms the baseline by a consid-
erable margin, in fact it performs equally well or better than the baseline with
twice as much L1 memory (e.g., Fig.6(a) 3/4-issue 4K,8K SOM), improving per-
formance by about 20%. Therefore, for small cache sizes, Aligned Scheduling
bridges half the performance gap between a SOM and a SOU architecture, with
no additional hardware. Aligned Scheduling performance improvements, how-
ever, decrease as the cache size increases. This is because cache misses become
less frequent (Fig.6(b)), therefore the probability of them happening simultane-
ously (something that Aligned Scheduling could exploit) decreases. The point of
diminishing returns for cjpeg is the point when the working set size equals the
cache size (16KB). For sizes greater than 32KB, the L1 miss rate drops below
8% and Aligned Scheduling cannot improve performance, but it does not hurt
it either.

b. The two Aligned Scheduling heuristics (HLPL and LLPL) work orthog-
onally and when both enabled they act cooperatively. Enabling both (Aligned-
BOTH Fig.6(a)) outperforms each individual heuristic Aligned-HLPL or Aligned-
LLPL, by a significant margin. This is true for both SOM and SOU semantics.

c. Aligned Scheduling performs better as the issue width increases. In fact,
for cjpeg, and for the degenerate VLIW case of 2-issue and for SOM semantics,
Aligned scheduling causes a slowdown. This is an example where the alignment
cost outweighs the benefit: Since the issue width is too narrow, the cache misses
cannot be effectively overlapped, therefore the scheduling penalty of issuing in-
structions ignoring their priorities outweighs the benefit of doing so. For any
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(a) Normalized Cycle counts (cjpeg).
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(b) L1 cache miss rate (cjpeg).
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(c) L2 cache miss rate (cjpeg).
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(d) Normalized cache-miss overlapping (cjpeg).
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Fig. 6. Performance of cjpeg for issue widths (2-4 issue) and L1 cache sizes (4K-32K)
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issue width higher than 2, Aligned Scheduling improves performance consider-
ably. This is intuitive as the more the issue slots, the more loads can get serviced
in parallel, which is exactly what Aligned Scheduling is meant to exploit.

d. An architecture with Stall-On-Use semantics can still benefit from Aligned
scheduling, though the performance improvement is less impressive. For small
cache sizes, the performance improvement is about 5%, but as we get close to
the working set size, there is little or no improvement. The reason (explained in
Section 2) is that with SOU semantics there are fewer opportunities to increase
the miss overlap, beyond what the hardware provides.

e. A Miss-Overlap is the event of multiple cache misses being serviced
in parallel. The count of overlapping misses is a measure of the effectiveness
of Aligned Scheduling. Fig.6(d) shows that the performance improvements of
Fig.6(a) are indeed caused by the increase in cache overlaps and not some other
scheduling side-effect.

f. According to Fig.6(e), the effective average latency of a Load (Memory
Access Time) decreases with Aligned scheduling on wide-issue VLIW pro-
cessors. This proves once more that the performance improvements are due to
overcoming the cache bottle-neck.

g. Finally, the L1 and L2 miss-rate (Fig.6(b)) seems to be largely unaffected
by the application of Aligned Scheduling. This is because: i) a miss is still counted
as a single miss even if it overlaps with another miss and ii) Aligned scheduling,
does not cause large-scale memory access reordering that could affect the cache
behavior. Therefore Aligned Scheduling speedups are not due of fewer misses
but rather due to decreasing the total amount of time that the VLIW processor
has to wait for the misses to be serviced.

5.2 All benchmarks

We now consider all benchmarks (Fig.7). We measured the cycle count, the miss
rate on both L1 and L2 caches, the overlapping of cache misses, and the aver-
age memory access time. We ran the benchmarks on a 4-issue VLIW processor
with 16KB-1way L1 and 256KB-4way L2 cache (see Section 4). We focus on
the performance of Aligned Scheduling compared to the Baseline Scheduler, all
on SOM. We compare them against the Baseline on SOU, which is hardware
supported and is therefore an estimate of the best we could expect from Aligned
Scheduling, a software-only approach. Aligned-SOM in Fig.7, is equivalent to to
Aligned-BOTH-SOM (both HLPL and LLPL enabled).

The results in Fig.7 show that Aligned Scheduling works for a variety of
benchmarks and achieves significant speedups on this architecture configura-
tion. In memory-bound benchmarks (e.g. 181.mcf) it even manages to reach the
performance levels of the hardware-based SOU. Aligned Scheduling is successful
at increasing the count of misses that overlap, as shown in the Miss-overlap graph
of Fig.7. In some cases (e.g. h263enc), the performance improvement can also be
attributed to a lower miss-rate, a side-effect of the instruction re-ordering. Only
few benchmarks (197.parser and 300.twolf) have fewer miss overlaps compared
to the baseline, but even in these cases the performance achieved is either close
to the baseline or better, due to overlapping fewer misses but ones of greater
latency, leading to better average memory access time.
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Fig. 7. Cycle count, Miss Rates, Miss overlaps and average Memory Access Time for
6 of the Mediabench II and the SPEC CINT2000 benchmarks.

Some of the benchmarks however are marginally worse than the baseline with
175.vpr on this processor setup, reaching a slowdown of 2.5%. These slowdowns
can be attributed to one of the following: 1. The small working set of most
benchmarks(e.g. it is 16KB for the majority of the MediabenchII [12]). There-
fore with the current cache setup Aligned Scheduling has a small headroom to
improve the cache behavior. As shown in Section5.1 in Fig.6(a), Aligned Schedul-
ing can indeed improve performance on such benchmarks as long as the cache
sizes are smaller than their working sets. 2. High sensitivity to the priority of
the critical path instructions. In such cases any instruction re-ordering done by
Aligned Scheduling can lead to a slowdown (this is true for 186.crafty, 255.vortex
and h263dec). In 175.vpr this effect is so strong, that even with substantially
increased miss-overlap (more than 20%), it takes a performance hit. 3. Inability
of Aligned Scheduling to form more effective groups of Load instructions than
those formed by the baseline. This happens rarely (see “Miss overlap”in Fig.7
djpeg,197.parser).

Benchmarks with high miss rates (L1 or L2) usually perform well under
Aligned Scheduling. As long as a benchmark has adequate amounts of stati-
cally analyzable MLP, and is not very sensitive on its critical path instructions
then a high miss rate should provide opportunities for Aligned Scheduling to
improve the execution cycles. This is evident in 181.mcf and h263enc. In par-
ticular h263enc, has a low L1 miss rate but a high L2 miss rate and gets a
performance improvement of about 7%. This suggests that Aligned Schedul-
ing effectively overlaps some of the performance-critical high latency L2 misses,
leading to significant performance improvements.
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6 Related Work

Non-blocking (also known as lockup-free caches) were introduced by [15] and
have been studied in detail since (e.g. [28], [26]). Non-blocking caches are a cost-
effective optimization and are common in all processors, including VLIW ones.
Aligned Scheduling exploits the non-blocking feature to improve performance on
VLIW processors.

Instruction scheduling optimized for cache memories has been stud-
ied in the past. The majority of the work [7, 13, 19, 17] focuses on improving
instruction scheduling for processors with non-blocking caches and stall-on-use
execution semantics. Balanced Scheduling [13] proposes a scheduling algorithm
for pipelined architectures that makes sure that the processors stalls less upon
a cache miss. The main goal of the instruction scheduler is to schedule the right
number of instructions after a load, such that, in case of a miss, there are enough
independent instructions to execute until the loaded value (that missed) is used
by an instruction. [19] improves Balanced Scheduling by applying ILP enhanc-
ing optimizations. An extension to Balanced Scheduling is introduced in [17],
which proposes using profiling information to drive instruction scheduling so
that it makes more informed decisions. [7] proposes a static cache-reuse model
that helps the instruction scheduler make informed decisions on the latency of a
memory instruction. The paper shows that this produces better schedules than
considering all memory instructions as either all-hits or all-misses.

Aligned Scheduling is very different from these approaches. It mainly targets
VLIW processors that have Stall-On-Miss execution semantics, enabling them
to improve their performance close to that of Stall-On-Use. Therefore the op-
timization that Aligned Scheduling introduces exploits a completely different
architectural feature. There is no indication that any of the schemes that target
stall-on-use semantics will consistently outperform our baseline on a stall-on-miss
VLIW target, which is why we do not compare against them.

The only work we are aware of that focuses on VLIW processors is Cache
Sensitive Modulo Scheduling [25]. It proposes a software-pipeline cyclic schedul-
ing algorithm that improves performance in one of two ways: it either schedules
memory instructions early or issues pre-fetch instructions. Both ways lead to
fewer cache misses, with the former one proving to be the most effective one.
This work is orthogonal to Aligned Scheduling as it focuses on the pre-fetching
problem rather than on grouping loads together.

Code optimizations that exploit the non-blocking caches have been pro-
posed in the past. [22] proposes an analysis and transformation framework for
optimizations that cluster misses together, leading to significant performance
improvements. The scheme involves high-level transformations, usually at loop
level. Aligned Scheduling on the other hand, is a scheduling algorithm, perform-
ing fine-grain optimization in the compiler back-end.

7 Conclusion

This work proposes Aligned Scheduling, a new scheduling algorithm for VLIW
processors that generates schedules that are more resilient to cache misses than
the existing schemes. It does so by incorporating the micro-architectural knowl-
edge of non-blocking caches and the absence of load-use interlocks into the
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scheduling algorithm. Aligned Scheduling exploits the statically known MLP to
group together Load instructions on the same cycle. This increases the probabil-
ity that cache misses overlap and get serviced simultaneously by the non-blocking
cache, therefore decreasing the amount of time the processor spends on cache
stalls. Our simulation results show that significant speed-ups can be achieved
across a wide range of benchmarks and VLIW architecture configurations.
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